Spelling suggestions: "subject:"conergy shifting"" "subject:"coenergy shifting""
1 |
ASSESSMENT OF LARGE-SCALE ENERGY STORAGE FOR GRID-CONNECTED SOLAR PARKS IN NAMIBIAÖhrström, Adrian, Frisk, Joakim January 2016 (has links)
The aim of this thesis is to investigate the impact and feasibility of implementing large scale energy storage systems for the purpose of energy shifting at grid connected solar parks in Namibia. The country, which receives a large amount of solar irradiance, is ideal for the construction of solar parks. However, as solar parks are an intermittent energy source, energy storage systems are becoming an increasingly attractive option in order to decrease losses and secure the supply of electricity. For this purpose, a model in Matlab was created to simulate different storage types. The input data was simulated with site-specific information for Windhoek in PVsyst and then evaluated in an economic analysis where electricity tariff pricing, battery investment costs and exchange rates were the main variables. This report is structured through starting with an introduction where the background of the Namibian electricity market and essential terms are presented. This is followed by a detailed description of the Matlab model construction and a literature review of battery types and storage systems. The simulation models and results are then evaluated both from an economical and technical perspective and the main findings are presented. Through this project, it was concluded that energy storage is not feasible today with current market conditions. Even with favorable electricity tariffs and Namibian exchange rates, storage technologies are currently too expensive today in order for it to be economically defensible. The forecast is however promising, where decreasing investment prices and an increased of R&D in the technology is expected. From the constructed model, it was however concluded that sodium-sulfur is by far the best option today. The reason for this is the low initial cost and relatively high round-trip efficiency of the technology. The model also proved the potential of increased electricity security from using energy shifting. With energy storage, the delivered energy from solar parks now coincide better with the demand since the intermittency is decreased. However, for future studies a detailed analysis of energy storage effects on the grid is recommended.
|
2 |
Lithium iron phosphate batteries for energy shifting / Litium-järnfosfatbatterier för kortvarig energilagringGlisén, Helena January 2023 (has links)
Elanvändningen i Sverige förväntas fördubblas till 2045 på grund av ökad elektrifiering av det svenska samhället. För att ställa om till ett elsystem som är beroende av mer förnyelsebara elproduktionsslag föreslår Svenska kraftnät (2021) att Sverige kommer att behöva öka sin flexibilitet i elnätet. Ett sätt att göra detta på är genom ellagring, där batterisystem är ett alternativ. Någon konkret plan för hur och när detta skulle genomföras har inte gjorts av Svenska kraftnät. Därför syftade detta projekt till att ta reda på om ett litiumjärnfosfat (LFP) batterienergilagringssystem skulle vara en lönsam investering att använda för energiomställning i det svenska elmarknadsområdet SE3. Detta mål uppnåddes genom att modellera ett batterilager över ett år och extrapolera dessa resultat till en investeringskalkyl genom annuitetsmetoden. Sammanfattat så konstaterades det att det inte är en lönsam investering. Men det fullständiga svaret är mer komplicerat än så. Batteriets storlek och livslängd påverkar batteriets investeringskostnad, som vidare påverkar batteriets lönsamhet. Batteriets livslängd är beroende av egenskaper som batteriets upp och urladdningstid (s.k. C-rate) samt i vilken utsträckning batteriet laddas och laddas ur (s.k. state of charge), som i sin tur influerar totala antalet laddningscykler batteriet kan genomföra. Exakt hur mycket dessa egenskaper påverkar livslängden för LFP:erna är oklart eftersom resultaten från tidigare studier av LFP-batteriers prestanda skiljer sig något. Till exempel är det känt att state of charge för ett batteri påverkar livslängden för ett LFP-batteri, men mer exakt hur mycket varierar beroende på studie, vilket visas i detta examensarbete. Det som gör detta ännu mer komplicerat är det faktum att investeringskostnaden kommer att förändras beroende på till exempel vilken state of charge som används. Dessutom varierar uppskattningar av investeringskostnaden för LFP-batterier i olika källor. Allt detta leder till flera typer av osäkerheter för att bestämma den exakta investeringskalkylen. Det huvudsakliga bidraget denna studie kan ge är dock att den kan ge en första inblick i hur ett batterilagringssystem för kortvarig energilagring (energy shifting) skulle fungera i Sverige. Med fler studier liknande detta projekt skulle en mer konkret plan kunna göras för genomförandet av det statliga klimatmålet om netto noll utsläpp av växthusgaser till år 2045 (Naturvårdsverket, 2023). / The electricity use in Sweden is expected to double before 2045 due to increased electrification of the Swedish society. In order to transition into an electrical system that is dependent of more sustainable renewable energy sources, Svenska kraftnät (2021) is suggesting that Sweden will need to increase their flexibility in the power grid. One of the main ideas on how to do that is through energy storages, where battery systems could play an important part. However, a concrete plan of how and when this would happen was not made clear by Svenska kraftnät. Therefore, this project aimed at finding out whether a Lithium iron phosphate (LFP) battery energy storage system would be a worthwhile investment to use for energy shifting in the Swedish SE3 electricity market area. This aim was reached through modelling a battery storage over a year and extrapolating these results into an investment calculation using the annuity method. In short, it was found that it is not a profitable investment. But the full answer was found to be more complicated than that. The battery’s size and lifetime affect the battery’s investment cost, which further affects the battery’s profitability. The battery’s lifetime is dependent on battery characteristics such as the charge/discharge time of the battery (C-rate) and the extent to which the battery is charged and discharged (state of charge), which in turn influences the total amount of charge cycles a battery can perform. Further, how significant these characteristics affect cost and lifetime of the LFP’s is unclear as the results from previous studies on LFP batteries differ somewhat. For example, it is known that the state of charge range of a battery affects the lifetime of an LFP battery, but by exactly how much varies with different studies, which is explained in this master thesis. What makes this even more complicated is the fact that depending on the state of charge used, the investment cost will change. Additionally, the assessed investment cost also changes depending on the source used. Therefore, the exact cost is difficult to determine. However, the main contribution this study has is that it can give a first insight into how a battery storage system for energy shifting would work. With more case-like studies similar to this project, a more concrete plan could be made about how to realise the Swedish governmental climate goal of net zero greenhouse gas emissions by the year 2045 (Naturvårdsverket, 2023).
|
Page generated in 0.0672 seconds