• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 5
  • Tagged with
  • 33
  • 33
  • 33
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The effects foundation options have on the design of load-bearing tilt-up concrete wall panels

Schmitt, Daniel A. January 1900 (has links)
Master of Science / Department of Architectural Engineering and Construction Science / Kimberly W. Kramer / Soils conditions vary throughout the United States and effect the behavior of the foundation system for building structures. The structural engineer needs to design a foundation system for a superstructure that is compatible with the soil conditions present at the site. Foundation systems can be classified as shallow and deep, and behave differently with different soils. Shallow foundation systems are typically used on sites with stiff soils, such as compacted sands or firm silts. Deep foundation systems are typically used on sites with soft soils, such as loose sands and expansive clays. A parametric study is performed within this report analyzing tilt-up concrete structures in Dallas, Texas, Denver, Colorado, and Kansas City, Missouri to determine the most economical tilt-up wall panel and foundation support system. These three locations represent a broad region within the Midwest of low-seismic activity, enabling the use of Ordinary Precast Wall Panels for the lateral force resisting system. Tilt-up wall panels are slender load-bearing walls constructed of reinforced concrete, cast on site, and lifted into their final position. Both a 32 ft (9.75 m) and 40 ft (12 m) tilt-up wall panel height are designed on three foundation systems: spread footings, continuous footings, and drilled piers. These two wall heights are typical for single-story or two-story structures and industrial warehouse projects. Spread footings and continuous footings are shallow foundation systems and drilled piers are a deep foundation system. Dallas and Denver both have vast presence of expansive soils while Kansas City has more abundant stiff soils. The analysis procedure used for the design of the tilt-up wall panels is the Alternative Design of Slender Walls in the American Concrete Institute standard ACI 318-05 Building Code and Commentary Section 14.8. Tilt-up wall panel design is typically controlled by lateral instability as a result from lateral loads combining with the axial loads to produce secondary moments. The provisions in the Alternative Design of Slender Walls consider progressive collapse of the wall panel from the increased deflection resulting from the secondary moments. Each tilt-up wall panel type studied is designed in each of the three locations on each foundation system type and the most economical section is recommended.
22

Design and application of fiber optic daylighting systems

Werring, Christopher G. January 1900 (has links)
Master of Science / Department of Architectural Engineering and Construction Science / Rhonda Wilkinson / Until recently sunlight was the primary source of illumination indoors, making perimeter fenestration essential and impacting the layout of buildings. Improvements in electric fixtures, light sources, control systems, electronic ballasts and dimming technology have influenced standard design practices to such a degree that allowing natural sunlight into a room is often seen as a liability. In the current climate of increasing energy prices and rising environmental awareness, energy conservation and resource preservation issues are a topic of governmental policy discussions for every nation on the planet. Governmental, institutional, social and economic incentives have emerged guiding the development and adoption of advanced daylighting techniques to reduce electric lighting loads in buildings used primarily during the day. A growing body of research demonstrates numerous health, occupant satisfaction, worker productivity and product sales benefits associated with natural lighting and exposure to sunlight. However, incorporating natural light into a lighting strategy is still complicated and risky as the intensity, variability and thermal load associated with sunlight can significantly impact mechanical systems and lead to serious occupant comfort issues if additional steps aren’t taken to attenuate or control direct sunlight. Fiber optic daylighting systems represent a new and innovative means of bringing direct sunlight into a building while maintaining the control ability and ease of application usually reserved for electric lighting by collecting natural light and channeling it through optical fibers to luminairies within the space. This technology has the ability to bring sunlight much deeper into buildings without impacting space layout or inviting the glare, lighting variability and heat gain issues that complicate most daylighting strategies. As products become commercially available and increasingly economically viable, these systems have the potential to conserve significant amounts of energy and improve indoor environmental quality across a variety of common applications.
23

Automated pavement condition analysis based on AASHTO guidelines

Radhakrishnan, Anirudh January 1900 (has links)
Master of Science / Department of Electrical and Computer Engineering / Balasubramaniam Natarajan / In this thesis, we present an automated system for detection and classification of cracks, based on the new standard proposed by `American Association of State Highway and Transportation Officials (AASHTO)'. The AASHTO standard is a draft standard, that attempts to overcome the limitations of current crack quantifying and classification methods. In the current standard, the crack classification relies heavily on the judgment of the expert. Thus the results are susceptible to human error. The effect of human error is especially severe when the amount of data collected is large. This lead to inconsistencies even if a single standard is being followed. The new AASHTO guidelines attempt to develop a method for consistent measurement of pavement condition. Gray scale images of the road are captured by an image capture vehicle and stored on a database. Through steps of thresholding, line detect and scanning, the gray scale image is converted to binary image, with 'zeros' representing cracked pixels. PCA analysis, followed by closing and filtering operation, are carried out on the gray scale image to identify cracked sub-images. The output from the filtering operation, is then replaced with its binary counterpart. In the final step the crack parameters are calculated. The region around the crack is divided into blocks of 32x32 to approximate and calculate the crack parameters with ease. The width of the crack is approximated by the average width of crack in each block. The orientation of the crack is calculated from the angle between direction of travel and the line joining the ends of the crack. Length of the crack is the displacement between the ends of the crack, and the position of the crack is calculated from the midpoint of the line joining the end points.
24

Greenhouse gas emissions and strategies for mitigation: opportunities in agriculture and energy sector

Parihar, Arun K. January 1900 (has links)
Master of Science / Department of Chemical Engineering / Larry E. Erickson / The impact of human activities on the atmosphere and the accompanying risks of long-term global climate change are by now familiar topics to many people. Although most of the increase in greenhouse gas (GHG) concentrations is due to carbon dioxide (CO2) emissions from fossil fuels, globally about one-third of the total human-induced warming effect due to GHGs comes from agriculture and land-use. This report provides a brief review of greenhouse effects and impacts on climate, human health and environment. The sources of emissions of greenhouse gases due to human activities, both current estimates and future projections, have been included. The report further discusses possible options for mitigation of greenhouse gases. The report also discusses the role agriculture can play towards mitigation of greenhouse gases as many agricultural processes such as anaerobic digestion, manure gasification; carbon sequestration etc. can help reduce or offset greenhouse gas emissions. Capture and sequestration of CO2 released as a result of burning fossil fuel in power plants, energy and other industries is gaining widespread interest as a potential method of controlling greenhouse gas emissions. Various technologies such as amine (MEA)-based CO2 absorption system for post-combustion flue gas applications have been developed, and can be integrated with existing plant operations. Removal of SO2 by using amine-based carbon capture system offers additional benefit. Efforts are underway to develop a broader suite of carbon capture and sequestration technologies for more comprehensive assessments in the context of multi-pollutant environmental management. Geologic formations and/ or possibly oceans can be used as sinks to store recovered CO2. In oil and gas exploration industry CO2 may be injected in producing or abandoned reservoirs which will not only help in maintaining the reservoir pressure (which improves overall field exploitation) but in some cases even leads to enhanced oil recovery.
25

A vehicle-based laser system for generating high-resolution digital elevation models

Li, Peng January 1900 (has links)
Doctor of Philosophy / Department of Biological & Agricultural Engineering / Naiqian Zhang / Soil surface roughness is a major factor influencing soil erosion by wind and water. Studying surface roughness requires accurate Digital Elevation Model (DEM) data. A vehicle-based laser measurement system was developed to generate high-resolution DEM data. The system consisted of five units: a laser line scanner to measure the surface elevation, a gyroscope sensor to monitor the attitude of the vehicle, a real-time kinematic GPS to provide the geographic positioning, a frame-rail mechanism to support the sensors, and a data-acquisition and control unit. A user interface program was developed to control the laser system and to collect the sensors data through a field laptop. Laboratory experiments were conducted to evaluate the performance of the laser sensor on different type of targets. The results indicated that the laser measurement on a white paper had the least variability than that on other targets. The laser distance measurement was calibrated using the data acquired on the white paper. Static accuracy tests of the gyroscope sensor on a platform that allowed two-axis rotations showed that angle measurement errors observed in combined pitch/roll rotations were larger than those in single rotations. Within ±30° of single rotations, the measurement errors for pitch and roll angles were within 0.8° and 0.4°, respectively. A model to study the effect of attitude measurement error on elevation measurement was also developed. DEM models were created by interpolating the raw laser data using a two-dimensional, three-nearest neighbor, distance-weighted algorithm. The DEM models can be used to identify shapes of different objects. The accuracy of the laser system in elevation measurement was evaluated by comparing the DEM data generated by the laser system for an unknown surface with that generated by a more accurate laser system for the same surface. Within four replications, the highest correlation coefficient between the measured and reference DEMs was 0.9371. The correlation coefficients among the four replications were greater than 0.948. After a median threshold filter and a median filter were applied to the raw laser data before and after the interpolation, respectively, the correlation coefficient between the measured and reference DEMs was improved to 0.954. Correlation coefficients of greater than 0.988 were achieved among the four replications. Grayscale images, which were created from the intensity data provided by the laser scanner, showed the potential to identify crop residues on soil surfaces. Results of an ambient light test indicated that neither sunlight nor fluorescent light affected the elevation measurement of the laser system. A rail vibration test showed that the linear rail slightly titled towards the laser scanner, which caused small variations in the pitch angle. A preliminary test on a bare soil surface was conducted to evaluate the capability of the laser system in measuring the DEM of geo-referenced surfaces. A cross-validation algorithm was developed to remove outliers. The results indicated that the system was capable of providing geo-referenced DEM data.
26

Repetitive member factor study for cold-formed steel framing systems

Clayton, Scott January 1900 (has links)
Master of Science / Department of Architectural Engineering and Construction Science / Sutton F. Stephens / Cold-formed steel has become a preferred building material for structural farming in many different types of structures, commonly for repetitive members such as floor joists, roof rafters, roof trusses and wall studs. For wood framed structures with repetitive members, a repetitive member factor increases the allowable bending stress from 1.00 to 1.50 times the reference design value, depending on both the type of material and the type of load. Currently, however, the bending strength of cold-formed steel repetitive members is not permitted to be increased, even though the method of framing is quite similar to that of wood except for the material properties. Typical light-frame wood construction consists of floor, roof, and wall systems, each with repetitive members connected by sheathing. A repetitive system is one of at least three members that are spaced not farther apart than 24-inches. These members must also be joined by a load distributing element adequate to support the design load. The behavior of the individual members, then, is affected by inclusion into this system. Additionally, the connected sheathing increases the bending capacity of bending members due to both composite action and load sharing. Composite action is a result of T-beam-like action between the repetitive member and connected sheathing, but is limited by nail slippage in the connection. Secondly, due to differential deflection between the members, sheathing is also able to distribute loads from weaker, more flexible members to the more rigid and stronger members. This effect is known as load-sharing. The same general principles of repetitive use should apply to cold-formed steel due to its similarity to wood construction. Accordingly, this paper conducts a preliminary study of the effects of both composite action and load-sharing in cold-formed steel assemblies and subsequently recommends using a repetitive member factor for cold-formed steel members.
27

Acid-functionalized nanoparticles for hydrolysis of lignocellulosic feedstocks

Peña Duque, Leidy E. January 1900 (has links)
Master of Science / Department of Biological and Agricultural Engineering / Donghai Wang / Acid catalysts have been successfully used for pretreatment of cellulosic biomass to improve sugar recovery and its later conversion to ethanol. However, use of acid requires a considerable equipment investment as well as disposal of residues. Acid-functionalized nanoparticles were synthesized for pretreatment and hydrolysis of lignocellulosic biomass to increase conversion efficiency at mild conditions. Advantages of using acid-functionalized metal nanoparticles are not only the acidic properties to catalyze hydrolysis and being small enough to penetrate into the lignocellulosic structure, but also being easily separable from hydrolysis residues by using a strong magnetic field. Cobalt spinel ferrite magnetic nanoparticles were synthesized using a microemulsion method and then covered with a layer of silica to protect them from oxidation. The silanol groups of the silica serve as the support of the sulfonic acid groups that were later attached to the surface of the nanoparticles. TEM images and FTIR methods were used to characterize the properties of acid-functionalized nanoparticles in terms of nanoparticle size, presence of sulfonic acid functional groups, and pH as an indicator of acid sites present. Citric acid-functionalized magnetite nanoparticles were also synthesized and evaluated. Wheat straw and wood fiber samples were treated with the acid supported nanoparticles at 80°C for 24 h to hydrolyze their hemicellulose fraction to sugars. Further hydrolysis of the liquid fraction was carried out to account for the amount of total solubilized sugars. HPLC was used to determine the total amount of sugars obtained in the aqueous solution. The perfluroalkyl-sulfonic acid functional groups from the magnetic nanoparticles yielded significantly higher amounts of oligosaccharides from wood and wheat straw samples than the alkyl-sulfonic acid functional groups did. More stable fluorosulfonic acid functionalized nanoparticles can potentially work as an effective heterogeneous catalyst for pretreatment of lignocellulosic materials.
28

Multipurpose room interior noise control for owners and facility managers

Seip, Clare Elizabeth January 1900 (has links)
Master of Science / Department of Architectural Engineering and Construction Science / Julia A. Keen / Throughout recent years, to minimize the cost of construction, a large number of multipurpose spaces have been built using lightweight, less expensive materials without considering or designing for noise control to mitigate any sound that is loud, unpleasant, unexpected, or undesired yet after construction is completed, noise issues are often evident within the space and, if severe enough, may render the intended function of the structure useless. To address this problem, this report is intended to introduce Owners and Facility Managers to some of the common solutions to resolve noise issues in multipurpose rooms. The report focuses on solutions for existing projects primarily, but it is also sensitive to budget constraints and the impact of renovation. Typical multipurpose rooms researched have a volume of 50,000-150,000 cubic feet and are expected to be used for speech activities, small music functions, and some physical sports activities. Therefore, this report will introduce the fundamentals of sound and room acoustics including interior surface materials and construction. Also included are typical noise issues from interior sources, solutions that can be taken within the building to attenuate noise, and the trade-offs associated with each solution.
29

Incorporating mechanical, electrical and plumbing systems into historic preservation projects - three case studies

Terry, Jason January 1900 (has links)
Master of Science / Department of Architectural Engineering and Construction Science / Sutton F. Stephens / Architectural engineers face many challenges in the design and implementation of mechanical, electrical, lighting, plumbing, and fire protection systems in buildings. Space and aesthetic coordination must be managed between the architects, engineers, contractors, and building owners. Further design issues are involved when renovating or preserving historic properties. Historic buildings often contain additional design limitations and character defining features that must be preserved. A building's character defining features often represent past history, culture, and architecture. To better understand the design coordination and other issues faced in historic renovation, three case studies located in Kansas City, Missouri, are presented to investigate the application of mechanical, electrical, and plumbing (MEP) system design into historic buildings. The three case studies include: the Stowers Institute for Medical Research, as a mechanical design; the Union Station, as an electrical and lighting design; and the Webster House, as a plumbing and fire protection design. The renovation projects' architects, engineers, and contractors were personally interviewed to obtain the most accurate information and account of the design and construction process. Additional information was gathered, and a tour of each building allowed for the pictorial documentation of each site. Preserving the historic character of buildings during renovations has many advantages and disadvantages for both the owners and the designers. The additional design parameters in historic renovation projects foster creative thinking and problem solving during the design and construction process. In order to implement a successful design, the architects, engineers, and contractors must work together and understand the value of a building's historic character during the design stage when adapting to a new usage.
30

Structural contracts and liability concerns associated with building information modeling

Boos, Peter Edward January 1900 (has links)
Master of Science / Department of Architectural Engineering and Construction Science / Kimberly W. Kramer / Building Information Modeling (BIM) is altering the way that the construction industry is developing design documents by involving all members of the design team as well as the general contractor early in the design process. The members are encouraged to offer advice on the design and constructability on the project. However, not only is the design process changing, but the liability and responsibility of each team member is changing as well. The alteration in responsibility can severely impact structural engineers because of the level of responsibility already associated with their role in the design process. This report looks at the concerns industry leaders and legal professionals have with how BIM is altering the liability landscape, such as standard contracts, software interoperability, data misuse, intellectual property, loss of data, the legal status of the model, the standard of care, and design delegation. In addition to the liability concerns, this report examines the steps that industry leaders have taken to prevent any unnecessary additional liability from affecting structural engineers.

Page generated in 0.076 seconds