• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 532
  • 89
  • 83
  • 83
  • 83
  • 83
  • 83
  • 83
  • 12
  • 2
  • 1
  • 1
  • Tagged with
  • 731
  • 731
  • 129
  • 123
  • 104
  • 59
  • 43
  • 39
  • 36
  • 35
  • 33
  • 33
  • 29
  • 28
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
381

Strategies and Technologies for Improving Air Quality Around Ports

Khan, Mohammad Yusuf 30 May 2013 (has links)
<p> Increased activity at ports is an indication of economic development and growth; however, it also puts public health, regional air quality and global climate at risk because the exhaust from the marine diesel engines is not subjected to the stringent regulations as on-road engines. This dissertation characterizes the effectiveness of strategies and technologies to mitigate criteria pollutants and the long-lived greenhouse gas, carbon dioxide (CO<sub> 2</sub>) from marine diesel engines. The dissertation also provides insight into the current state-of-art of gaseous and particulate matter portable emission measurement system (PEMS). Results from a project show how to determine the measurement allowance for PEMS in order to provide accurate measurements for the development of emission inventories and subsequently, air pollution mitigating regulations. </p><p> In-use gaseous emissions from the two main engines were measured at sea for the first time in order to evaluate the performance of a Code of Federal Regulations (CFR) compliant PEMS against instruments meeting the simplified measurement method (SMM) complaint with International Maritime Organization (IMO). </p><p> For the first time, emissions were measured from a modern container vessel with newest engine technologies. The vessel was operated on marine gas oil, a cleaner fuel, in regulated waters and on heavy fuel oil in unregulated waters. Impact of cleaner fuel and newest technologies on the engine was assessed. A simple equation was developed to estimate time required to completely switch fuels which can be used by vessel owners to comply with regional/international fuel regulations. </p><p> Vessel speed reduction (VSR), which is a worldwide acceptable strategy for ocean-going vessels (OGVs), was evaluated. The study showed that putting a speed limit on a container OGVs as they sail near ports and coastlines could cut emissions of air pollutants by up to 70%. This study also found that by reducing the vessel speed by a mere 3-6 knots from cruise speed will result in significant reductions of criteria pollutants and carbon dioxide. </p><p> Towards the goal of reducing emissions and dependency on fossil fuels, this dissertation explores benefits of consuming hydrotreated algae biofuel in small marine diesel engines for the first time. Significant particulate matter (PM2.5) and nitrogen oxides (NOx) benefits were reported with slight improve in fuel economy when fuel was switched from ultra low sulfur diesel (ULSD) to 50:50 blend of ULSD and algae fuels. </p><p> The dissertation investigates the benefits associated with the hybridization of the tugboat. A conventional tugboat was retrofitted with one auxiliary engine, shaft generators, addition of lithium polymer batteries and an energy management system. Up to 30% reduction in NO<sub>x</sub>, PM<sub>2.5</sub> and CO<sub>2</sub> was found. The energy management system in the hybrid tugboat allows the use of the auxiliary engine for propulsion as opposed to the only main engines during transit mode, thus leading to the significant reductions. </p><p> Another section of this dissertation provides an evaluation of latest PM-PEMS under different environmental and in-use conditions and features performance, accuracy and precision of PM-PEMS compared to the gravimetric reference method. The research from this study shows current PM-PEMS typically underreport the PM emissions compared to the reference method, with the exception of PEMS with photo-acoustic technology which incorporated a gravimetric filter. All PM-PEMS under evaluation performed poorly when encountered with sulfate laden PM during diesel particulate filter (DPF) regeneration.</p>
382

Analysis of the swimming behavioral response of western blacknose dace in a turbulence modified flow field

Goettel, Michael Thomas 09 August 2013 (has links)
<p> Fish passage success rates through hydraulic infrastructure have been historically low due to flow field conditions that exceed the physical or behavioral capabilities of a given species. Significant efforts to design and modify hydraulic structures for enhanced passage rates have failed to achieve the desired results, with a primary reason being a poor understanding of how fish respond to complex hydraulic conditions. Many contemporary research efforts have targeted the inter-relationship between hydraulics and fish behavior in the laboratory using live fish trials in an attempt to better comprehend these interactions and ultimately provide a basis for the development of biologically-based design criteria. In this study experiments were conducted to assess the behavioral responses along swimming trajectories of western blacknose dace (<i> Rhinichthys obtusus</i>) in turbulent flow conditions. The objective was to test the hypothesis that the dace would preferentially adjust their swim paths to minimize their exposure to elevated turbulent conditions. Experimental data were collected through digital imaging of dace trajectories for fish that had been released into a shallow flume and allowed to swim through turbulence enhanced flow fields. Additionally, detailed velocity measurements were collected with an acoustic Doppler velocimeter to allow the comparison of dace trajectories to flow field conditions represented by average metrics of turbulent kinetic energy and Reynolds shear stresses. Analysis of the data consisted of the quantification of the proportion of the time that a dace's swim path selected a direction toward a lower magnitude turbulence condition when such an option existed. Fish paths were also graphically compared to turbulence contour plots to qualitatively assess the presence of swim path preferences or patterns. Lastly, video footage of each trial was evaluated to qualitatively assess the presence of novel behaviors that could have implications for the swimming trajectories observed. Results indicate that the dace did not preferentially avoid turbulence at statistically significant levels under the conditions experienced in the flume; however, data do suggest that some behavior relative to turbulence was non-random. Qualitative observations of video footage suggest that non-hydraulic factors, such as the presence of conspecifics and light intensity, also influence the swim path trajectories of the western blacknose dace. Future research will require more targeted turbulent conditions, simultaneous multivariate observations and analyses that factor in non-hydraulically-based behavior and the incorporation of coupled behavioral and hydraulic data at reduced time and length scales for primary variables. It is envisioned that the results of this study can provide guidance for future studies aimed at developing biologically based design criteria for enhanced fish passage at hydraulic infrastructure.</p>
383

Optimization of TiO2 photocatalyst in an advanced oxidation process for the treatment of landfill leachate

Youngman, Frank 14 August 2013 (has links)
<p> Since the United States Environmental Protection Agency (USEPA) began requiring landfills to implement a leachate collection system in 1991, the proper disposal of leachate has become a growing concern. The potential toxicity of landfill leachate will contaminate groundwater and soil if not managed properly. Research has been made in efforts to manage leachate in a cost-effective, single treatment process. Photocatalytic oxidation is an advanced oxidation process (AOP) which has shown ability to reduce toxicity of an array of leachate constituents including organics, inorganics and heavy metals. The purpose of this manuscript is to scale up the batch scale study of TiO<sub>2</sub> photocatalytic degradation of leachate utilizing a pilot scale falling film reactor. In this research project, the use of UV/TiO<sub>2</sub> for the removal of chemical oxygen demand (COD), ammonia, alkalinity and color will be studied in order to optimize catalyst dosage, determine pH effects and reaction kinetics and develop preliminary cost estimates.</p>
384

A dynamic life cycle assessment framework for whole buildings including indoor environmental quality impacts

Collinge, William O. 24 September 2013 (has links)
<p> Life cycle assessment (LCA) can aid in quantifying the environmental impacts of whole buildings by evaluating materials, construction, operation and end of life phases with the goal of identifying areas of potential improvement. Since buildings have long useful lifetimes, and the use phase can have large environmental impacts, variations within the use phase can sometimes be greater than the total impacts of other phases. Additionally, buildings are operated within changing industrial and environmental systems; the simultaneous evaluation of these dynamic systems is recognized as a need in LCA. At the whole building level, LCA of buildings has also failed to account for internal impacts due to indoor environmental quality (IEQ). The two key contributions of this work are 1) the development of an explicit framework for DLCA and 2) the inclusion of IEQ impacts related to both occupant health and productivity. DLCA was defined as &ldquo;an approach to LCA which explicitly incorporates dynamic process modeling in the context of temporal and spatial variations in the surrounding industrial and environmental systems.&rdquo; IEQ impacts were separated into three types: 1) chemical impacts, 2) nonchemical health impacts, and 3) productivity impacts. Dynamic feedback loops were incorporated in a combined energy/IEQ model, which was applied to an illustrative case study of the Mascaro Center for Sustainable Innovation (MCSI) building at the University of Pittsburgh. Data were collected by a system of energy, temperature, airflow and air quality sensors, and supplemented with a postoccupancy building survey to elicit occupants&rsquo; qualitative evaluation of IEQ and its impact on productivity. The IEQ+DLCA model was used to evaluate the tradeoffs or co-benefits of energy-savings scenarios. Accounting for dynamic variation changed the overall results in several LCIA categories&mdash;increasing nonrenewable energy use by 15% but reducing impacts due to criteria air pollutants by over 50%. Internal respiratory effects due to particulate matter were up to 10% of external impacts, and internal cancer impacts from VOC inhalation were several times to almost an order of magnitude greater than external cancer impacts. An analysis of potential energy saving scenarios highlighted tradeoffs between internal and external impacts, with some energy savings coming at a cost of negative impacts on either internal health, productivity or both. Findings support including both internal and external impacts in green building standards, and demonstrate an improved quantitative LCA method for the comparative evaluation of building designs.</p>
385

Carbon dioxide enhanced oil recovery from the Citronelle Oil Field and carbon sequestration in the Donovan sand, southwest Alabama

Theodorou, Konstantinos 02 October 2013 (has links)
<p> Capturing carbon dioxide (CO<sub>2</sub>) from stationary sources and injecting it into deep underground geologic formations has been identified as a viable method for reducing carbon emissions to the atmosphere. Sedimentary rocks, such as sandstones overlain by shales or evaporites, are the preferred formations because their morphology and structure provide pore space, and containment for the long term storage of CO<sub>2</sub>. Sandstone formations have also served as repositories to migrating hydrocarbons, and are the sites of many oil recovery operations. For many depleted oil reservoirs, secondary waterflooding recovery methods are no longer efficient or economically viable, hence the application of tertiary CO<sub>2</sub> enhanced oil recovery (CO<sub> 2</sub>-EOR) followed by CO<sub>2</sub> storage is an attractive and cost effective business plan. </p><p> Citronelle Oil Field, located in southwest Alabama, is the largest and longest producing sandstone oil reservoir in the state, having produced more than 170 million barrels of oil from its estimated 500 million barrels of original oil in place, since its discovery in 1955. The field is in the later stages of secondary recovery by waterflooding and daily oil production has declined considerably. The field is comprised of the Upper and Lower Donovan hydrocarbon bearing sandstones, which are separated by the saline-water-bearing sandstones of the Middle Donovan. The Ferry Lake Anhydrite, which overlies the three sections, serves as their caprock. </p><p> The present work is focused on an investigation of the feasibility of a CO<sub>2</sub>-EOR project for the Citronelle Oil Field and the use of the Middle Donovan for long term CO<sub>2</sub> storage. A set of static calculations, based on estimation methods which were retrieved from publications in the field, was followed by computer simulations using MASTER 3.0, TOUGH2-ECO2N, and TOUGHREACT. Results using MASTER 3.0, for simulation of CO<sub>2</sub>-EOR, indicated that nearly 50 million barrels of additional oil could be produced by tertiary recovery. Results using TOUGH2-ECO2N and TOUGHREACT, for the simulations of CO<sub>2</sub> storage, indicated that 159 million metric tons (175 short tons) of CO<sub>2</sub> could be stored in the Middle Donovan formation. An investigation into possible CO<sub>2</sub> leakage from the reservoirs indicated that the Ferry Lake Anhydrite serves as a very reliable long term storage seal.</p><p> The present work can serve as a template for preliminary assessment of tertiary oil recovery and CO<sub>2</sub> storage of similar oil reservoirs and saline-water formations.</p>
386

Smooth cord grass (Spartina alterniflora) response to simulated oil spills in sediment-water microcosms

Beenk, Elliott E. 01 November 2013 (has links)
<p> Simulated oil spills were created in <i>S. alterniflora</i> sediment-water microcosms to determine the effects of applied crude oil on <i> S. alterniflora</i> during two 90-day studies. In the first experiment, oil dosage was varied at 0-250 mg crude oil/g wet soil to determine the lethal dosage level. In the second experiment, oil type, dosage, and soil type were varied to determine the effects of oil under multiple scales of resolution. A light, medium, and heavy crude oil at dosages ranging from 0-150 mg crude oil/g wet soil were used in addition to an oiled and non-oiled soil. Following the completion of the 90-day experiment, several key findings were observed: (1) The lethal dosage limit was reached at 250 mg crude oil/g wet soil during the first experiment but not the second, by design; (2) At initial dosages of 10 and 50 mg crude oil/g wet soil, the oiled soil (acclimated for 4 months) was more influential in decreasing cumulative biomass growth rates compared to oil applied at the oil-water interface; (3) At the heaviest dosages applied as a simulated oil slick, concentrations of 150 mg crude oil/g wet soil, evapotranspiration rates were negatively affected by the oil (significant at p=0.05 in a one-tailed t-test); (4) Light, heavy, and then medium crude oil showed the lowest biomass growths, in that order, indicating that light crude oil was the most toxic in these microcosm experiments with <i> S. alterniflora;</i> (5) The 10 mg oil/g wet soil out-performed the 0 mg oil/g wet soil in transpiration and biomass growth.</p>
387

Performance of nanostructured metal oxane derived ceramic membranes for fuel cell applications

Tsui, Eliza M. January 2007 (has links)
An iron-based ceramic material is shown to be a practical candidate as an electrolyte material for proton exchange membrane in fuel cells. These membranes have comparable conductivity to the NafionRTM membrane with the advantages of lower permeability of methanol, less sensitivity to humidity, good chemical stability in fuel cell environment and lower material costs. Iron oxide nanoparticles (ferroxane) and aluminum oxide nanoparticles (alumoxane) were prepared as a pre-cursor materials for membrane fabrication. The structures of ferroxane and alumoxane derived ceramics were characterized with FTIR, SEM, TEM, and nitrogen adsorption-desorption. Protonic conductivity of the sintered membranes was studied by electrochemical impedance spectroscopy (EIS) to determine their feasibility in fuel cell applications. Ferroxane derived ceramics fired at 300&deg;C has high proton conductivity and low dependence of humidity (ranging from 1.29 x 10-2 to 2.65 x 10-2 S&middot;cm-1 at relative humidities of 33% to 100%). The values are comparable to, but on the low end of, the reported conductivities of Nafion. Aluminum-based ceramic material (alumoxane) has a lower conductivity at 2.23 x 10-4 to 3.83 x 10-4 S&middot;cm -1 from 33% RH to 100% RH. The conductivity study as a function of operating temperature indicated the proton transfer for sintered ferroxane-derived membrane likely occurs via a Grotthus mechanism. The results of H2/air fuel cell indicated sintered ferroxane electrolyte could be operated at low temperature. The fuel cell exhibited steady performance with increasing power density over time. The sintered ferroxane-derived membrane with PVA sintered at 500&deg;C has a power density of 5.21 mW&middot;cm-2 and a current density of 16.5 mA&middot;cm-2 measured at room temperature. The methanol permeabilities of sintered ferroxane and alumoxane derived ceramics were lower than that of Nafion and were 1.23 x 10-7 and 1.65 x 10-7 cm2&middot;s-1 respectively. However, the open circuit voltage of ferroxane in DMFC was not improved in comparison to Nafion. Ferroxane-derived ceramic electrolyte sintered at 300&deg;C in methanol/air fuel cell measured at 20&deg;C had a power density of 7.7 muW&middot;cm-2 with 2 M methanol solution. The power density increased to 30 muW&middot;cm-2 with increasing methanol concentration to 18.5 M.
388

Estimation of contaminant concentration in ground water using a stochastic flow and transport model

Hauschel, Elaine Margaret Yonker January 1996 (has links)
Bioplume II, a widely used computer model developed by researchers at Rice University, models the transport of dissolved hydrocarbons in ground water under the influence of oxygen-limited biodegradation. The model is deterministic, and it was of interest to allow the model to reflect uncertainty in its input variables and to quantify the resulting uncertainty in output contamination estimates. A Monte Carlo interface to the model was developed. This interface gives contaminant concentration information in the form of mean and standard deviation maps. An improved method of estimating contaminant concentrations using this stochastic version of Bioplume II is presented. This method allows contaminant concentration estimates to be obtained for arbitrary spatial locations, not limited to locations at the centers of the cells on the grid used by the model. Additionally, the method allows for calculation of the probability that the contaminant exceeds some user-specified threshold for any location within the area being modeled.
389

Irreversible adsorption of hydrocarbons to natural and surrogate sediments

Hunter, Margaret Ann January 1996 (has links)
The remediation of soils contaminated by hydrophobic organic chemicals is severely limited by the existence of an irreversibly bound fraction causing long-term low level release. Many mechanisms have been proposed but, the complexity of soils and sediments has made it difficult to determine specifically what causes the bound fraction. To reduce the heterogeneous nature of soils, a surrogate sediment was developed by coating non porous anatase with the surfactant sodium dodecyl benzene sulfonate. The system was verified by comparing the adsorption/desorption properties of the surrogate to those of a natural sediment. The partition coefficient for adsorption of PCB, and naphthalene to both sediments were similar and were in the range of literature reported values. The driving force for the adsorption process was determined to be hydrophobic in nature. Bimodal desorption with a labile reversible phase and a resistant phase has been observed to exist for both a natural and surrogate sediment. The desorption could not be explained by artifacts of the procedure or commonly used kinetic models. The characteristics of the bound fraction were determined by repetitively exposing the sediment to contaminant. The irreversible compartment has a finite and fixed size and appeared to fill in a stepwise manner which is in proportion to the solution phase concentration. The size of the irreversible compartment for naphthalene sorbed to Lula, PCB sorbed to Lula and PCB sorbed to surrogate were 10 $\mu$g/g, 0.41 $\mu$g/g and 0.36 $\mu$g/g, respectively. Desorption from the irreversible compartment reached an equilibrium concentration which was lower than predicted by hydrophobically driven equilibrium equations. The equilibrium concentration of desorption from the irreversible compartment for naphthalene from Lula, PCB from Lula and PCB from the surrogate were 2-5 $\mu$g/l, 0.2-0.6 $\mu$g/l and 0.5-0.8 $\mu$g/l, respectively. Field observations appeared to be consistent with the laboratory observations where the contaminants on soil and sediment resisted desorption and the irreversible compartment is equilibrated at sub ppb residual solution concentrations in the native water above the solids. Irreversible adsorption may have a significant impact on regulatory, modeling and remediation activities.
390

Aquatic phytotransformation of trinitrotoluene in contaminated media

Vanderford, Mindy January 1996 (has links)
Recent investigations indicate that 2,4,6-trinitrotoluene (TNT) is rapidly transformed in an aquatic environment by the action of photosynthetic organisms. Several plant species from a variety of culture conditions were examined that displayed the capacity to transform TNT. The kinetics of transformation and the fate of transformation products were monitored by MECE and HPLC analysis in both the aquatic media and within the plant tissues. (U)$\sp{14}$C-TNT was introduced into the plant systems in order to monitor the fate of the aromatic ring. In order to assess the action of plant biochemistry in isolation from ordinary periphyton, axenic plants were examined for their metabolic capacity. Experiments showed that the majority of TNT is rapidly transformed into an unidentified soluble product in the medium and plant tissues with small quantities of reduction products appeared transiently. Over time, an increasing amount of $\sp{14}$C was irreversibly associated with the plant tissue.

Page generated in 0.134 seconds