• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A numerical and experimental study of sampling disturbance

Siddique, Abu January 1990 (has links)
No description available.
2

Nanostructure and Engineering Properties of 1.4 nm Tobermorite, Jennite and other Layered Calcium Silicate Hydrates

Pourbeik, Pouya January 2015 (has links)
The nature of the calcium-silicate-hydrate phase in hydrated Portland cement has been the subject of considerable debate for decades. Various nanostructural models have been proposed including those constructed from colloidal-based particulate systems and those formulated on the basis of layered calcium-silicate-hydrates. These are examined in detail in the literature review section of the thesis. Relatively recent composition-based models have been proposed by Taylor and Richardson-Groves. These models contain structural elements comprised of 1.4 nm tobermorite and jennite. Details are also provided in the literature review. There is however a paucity of data on the engineering properties of pure calcium-silicate-hydrate phases and virtually none on the mechanical performance of 1.4 nm tobermorite and jennite. The global objective of this thesis was to examine the compatibility of the composition-based models with the engineering behaviour of the pure tobermorite and jennite phases. Pure phases of a variety of layered calcium-silicate-hydrates were synthesized and novel techniques developed to determine their engineering characteristics in a variety of test environments. The silicate phases investigated included high temperature silicates e.g. gyrolite as these layered structures are known to be cross-linked. Investigation of the role of ‘structural’ water in layered silicates was also a part of these studies. The thesis is based on a series of twelve refereed journal papers by the candidate (eight are published or accepted and four have been submitted for publication). The research is reported in four parts with each part comprised of three papers. Each part provides insight into the nanostructure of C-S-H in hydrated cement. The arguments developed evolve from an assessment of various factors including aging and the state of water in the layered silicates. The first part of the thesis focuses on the development and application of dynamic mechanical thermo-analysis methods that are sensitive to phase changes and are useful for assessing the compatibility of engineering behaviour with model composition based on 1.4 nm tobermorite and jennite. The second part represents a study of volume stability and mechanical property-porosity relationships for the pure silicate phases that are germane to these studies. The third part focuses on prolonged aging and role of structural water in cement paste hydrated for 45 years. The fourth and final part attempts to address the role of layer structure e.g. cross-linking of silicate sheets on engineering behaviour. The non-uniqueness of modulus of elasticity with respect to equilibrium moisture content is demonstrated. Structurally related irreversible effects that are dependent on drying history are rationalized. A summary chapter is provided wherein the evidence for a composition-based model with tobermorite and jennite structural units is rationalized in terms of the experimental evidence provided in this study and suggestions for future research are discussed.
3

Engineering Properties, and Slope Stability and Settlement Analysis Related to Phosphate Mine Spoil Dumps in Southeastern Idaho

Riker, Richard Ellsworth 01 May 1978 (has links)
The engineering properties of waste spoil from phosphate mines in Southeastern Idaho were determined through field and laboratory testing. The testing included compaction tests, grain size analysis, powder x-ray defraction tests, permeability tests, compression tests, triaxial and direct shear strength tests, and nutrient analyses. Based on these tests, the slope stability and settlement characteristics of phosphate spoil dumps were investigated. The study showed that the foundation is an important component of the stability of a spoil dump. Hypothetical examples were used to illustrate possible modes of foundation failures. Such failures might occur when weak foundation soils exist or when there is a lack of embankment-foundation preparation prior to the disposal of waste material. When considering failures through only the middle waste shale embankment material, the study showed that dumps constructed by end-dumping the spoil material over angle of repose embankments or by scraper filling the material in horizontal lifts will be adequately safe against slope failure if: o Embankment slopes are graded to 21/2 horizontal to 1 vertical or flatter. o Proper precautions are taken to prevent the build-up of a phreatic surface near the top of the embankment. The study also showed that post construction settlement in spoil dumps can be attributed to: o A slow continuing settlement which is linear with the log of time. o Saturation collapse settlement which occurs with increases in the moisture contents. Post construction settlement in spoil dumps is caused principally by increases in the moisture content in layers of middle waste shales and soft cherts. A rationale method for predicting magnitudes of post construction settlement in spoil dumps was also developed as part of this study.
4

The Effect of Resin Type and Glass Content on the Fire Engineering Properties of Typical FRP Composites

Avila, Melissa Barter 03 April 2007 (has links)
This study is designed to provide the composites industry as well as the fire engineering industry baseline data for pyrolysis modelling of common fiber reinforced polymer (FRP) systems. Four resin systems and three glass contents will be considered. This matrix of FRP systems has been carefully fabricated and documented so as to provide“transparency" as to the system compositions. An important and interesting aspect of these FRP systems is that all the resins used are listed by the manufacturers as Class 1 or Class A per ASTM E 84. The FRP systems are being evaluated in bench scale modern fire test apparatuses (FPA, ASTM E 2058, and Cone, ASTM E 1354); detailed information on the FPA is provided. These apparatuses provide a range of measurements such as heat release rate that can be used to calculate engineering“properties" of these FRP systems. The“properties", such as minimum heat flux for proper ignition (found to range from 20 to over 100 kW/m2) and the b flame spread parameter, can then be used to compare the fire performance (flashover potential) of these FRP systems according to resin type and glass content. Additional instrumentation has also been added to the specimens to allow surface and in-depth temperatures to be measured. The additional measurements are used to complete a set of data for pyrolysis modelling and for calculating thermal properties of the composites. The effect of environment oxygen concentration and flaming and non-flaming decomposition are investigated in terms of fundamental pyrolysis behavior of the FRP systems. A general conclusion is that the phenolic composite has better fire engineering“properties" than the polyester composite but the glass is the controlling component of the composite with regards to temperature profile and resulting thermal properties.
5

Probabilisltic Analysis of Engineering Response of Fiber Reinforced Soils

Manjari, K Geetha January 2013 (has links) (PDF)
The concept of reinforcement was developed in late 20th century and since then till the recent past there are many works carried out on the effect of fibers in imparting strength and stiffness to the soil. Experimental investigations on fiber reinforced soils showed an increase in shear strength and reduction in post peak loss of strength due to the reinforcement. Analytical/mechanistic models are developed to predict the stress-strain response of fiber reinforced soil (under discrete framework, energy dissipation methods, force equilibrium methods etc). Numerical investigations are also carried out, and it was observed that the presence of random reinforcing material in soils make the stress concentration diffuse more and restrict the shear band formation. Soil properties vary from point to point at micro level and influence stress mobilization. Hence, there is a need to carry out probabilistic analysis to capture the effects of uncertainties and variability in soil and their influence on stress-strain evolution. In the present thesis an attempt has been made to propose a mechanistic model that predicts the stress-strain response of fiber reinforced soil and also considers the effect of anisotropy of fibers. A stochastic/probabilistic model is developed that predicts the stochastic stress-strain response of fiber reinforced soil. In addition, probabilistic analysis is carried out to observe the effect of number of fibers across the shear plane in imparting shear resistance to soil. The mechanistic model and stochastic models are validated with reference to the experimental results of consolidated undrained (CU) triaxial tests on coir fiber reinforced red soil for different fiber contents. The entire thesis is divided into six chapters. Chapter-wise description is given below. Chapter one presents a general introduction to the works carried out on fiber reinforced soils and also the investigations carried out on probabilistic methodologies that takes into account the soil variability. Thus, the chapter gives an outline of the models developed under mechanistic and probabilistic frameworks in the thesis. The objectives and organization of the thesis are also presented. Chapter two presents a detailed review of literature on the role of fibers in fiber reinforced soil. The details of experimental investigations carried out and models developed are explained briefly. Also, the literature pertaining to the role of variability in soil on its engineering behavior is presented. Based on the literature presented in this chapter, concluding remarks are made. Chapter three presents the details of a new mechanistic model developed based on modified Cam-clay model. This model considers the effect of fiber content and also the effect of anisotropy due to fibers. The predictions from the mechanistic model are compared with the experimental results. Under anisotropic condition, as angles of inclination of fiber vary from 0° to 90° with the bedding plane, it is observed that the strength increment in the reinforced soil is not as significant as that observed in isotropic case. Horizontal fibers turn out to be most effective since they are subjected to maximum extension thereby inducing tensile resistance which in turn contributes for strength increase in fiber reinforced soil. Chapter four presents a new approach to predict the stochastic stress-strain response of soil. Non-homogeneous Markov chain (multi-level homogeneous Markov chain) modeling is used in the prediction of stochastic response of soil. The statistical variations in the basic variables are taken into account by considering the response quantities (viz. stress at a given strain or settlement at a given load level) as random. A bi-level Homogeneous Markov chain predicts the stochastic stress-strain response efficiently. The predicted results are in good agreement with the experimental results. An illustration of this model is done to predict the stochastic load-settlement response of cohesionless soil. A simple tri-level homogeneous Markov chain model is proposed to predict settlements of soil at a given load for an isolated square footing subjected to axial compression. A parametric study on the effect of correlation coefficient on the prediction of settlements is performed. Chapter five presents the results of probabilistic analysis carried out to determine the effect of number of fibers across the shear plane in improving the shear strength of soil. It is observed that as the percentage of fibers in the specimen increases, the probability of failure of specimen under the same stress condition reduces and thus the reliability of the fiber reinforced soil system increases. In Chapter six, a summary of the important conclusions from the various studies reported in the dissertation are presented.
6

Evaluation of the Engineering Properties of Municipal Solid Waste for Landfill Design

Lakshmikanthan, P January 2015 (has links) (PDF)
The objective of this thesis is to evaluate the engineering properties of Municipal Solid Waste (MSW) that are necessary in the design of landfills. The engineering properties of MSW such as compressibility, shear strength, stiffness and hydraulic conductivity are crucial in design and construction of landfills. The variation of the engineering properties with time, age and degradation are of paramount importance in the field of landfill engineering. There is a need to address the role of the engineering properties in landfill engineering as it is not apparent how the engineering characteristics vary with time. The thesis presents the results of study of the engineering properties of MSW comprehensively and develops experimental data for design of MSW landfills. The work includes the study of the index properties and the engineering properties of MSW such as compressibility, shear strength, shear modulus and damping ratio and a detailed experimental study of the bioreactor landfill. The components of settlements, variation of shear strength with respect to unit weight and particle size are determined experimentally and analyzed. The dynamic properties such as shear modulus and material damping ratio and its variation with parameters such as unit weight, load, amplitude, degradation and moisture content are studied and analyzed. The normalized shear modulus reduction curve which is used in the seismic analysis of the landfills is developed for MSW based on the experimental results and previous studies. A pilot-scale bioreactor was setup in the laboratory for long term monitoring of the settlement, temperature variation and gas production simultaneously. The parameters of interest viz, pH, BOD, COD, conductivity, alkalinity, methane and carbon-di-oxide were determined. The generated data can be effectively used in the engineered design of landfills. For a better understanding, the present thesis is divided into the following eight chapter Chapter 1 provides a general introduction to the thesis with respect to the importance of engineering properties of MSW and presents the organization of the thesis. Chapter 2 presents a detailed review of literature pertaining to the basic, index and the engineering properties of MSW namely compressibility, shear strength, shear modulus and damping ratio, bioreactor landfill and also the scope of the study. Chapter 3 includes the materials and methods followed in the thesis. Chapter 4 presents the evaluation of compressibility characteristics of MSW including the components of settlement and the settlement model parameters. Chapter 5 presents the determination of the shear strength properties of MSW using direct shear tests and triaxial tests. The variation of the strength with respect to unit weight and the particle size is examined. The results are examined in terms of strength ratio and stiffness ratio and the implications are discussed. Chapter 6 presents the study of the dynamic characters of MSW. The variation of the shear modulus and damping ratio with respect to unit weight, confining pressure, loading frequency, decomposition and moisture content are analyzed. Normalized shear modulus reduction and damping curves are proposed for seismic analysis. Chapter 7 presents the study of the conventional and the bioreactor landfill in a small scale laboratory setup. A large scale experimental setup is fabricated to study the characteristics of a bioreactor landfill and includes the long term monitoring and analysis of temperature, gas, settlement and leachate characteristics periodically. The results of the comprehensive study are presented in this chapter. Chapter 8 summarizes the important conclusions from the various experimental studies reported in this dissertation. Conclusions and the scope of future work are presented. A detailed list of references and the list of publications from the thesis are presented at the end. Appendix A presents the life cycle analysis and life cycle cost analysis of MSW land disposal options. The land disposal options such as open dumps, engineered landfills and bioreactor landfills are analyzed in this study.

Page generated in 0.1117 seconds