• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Adaptive Quality of Service Mechanisms in Wireless Networks

Lin, Yuh-Chung 07 July 2008 (has links)
The increasing popularity of wireless networks over the last years indicates that there will be a demand for communicating devices providing high capacity communication together with QoS requirements. There are two types of wireless networks, infrastructure and Ad Hoc networks. The variation of topology caused by the mobility of hosts in the Ad Hoc networks results in a long latency, large jitter and low throughput. In infrastructure wireless networks, a base station (BS) or an Access Point (AP) is in charge of the data transmission. Therefore, the wireless hop can be considered as another hop of the transmission path. With the rapid growth of wireless traffics, the future wireless network is expected to provide services for heterogeneous data traffics with different quality of service requirements. Most proposed schemes do not have mechanisms to adapt to environment changes. In real situation, bandwidths, error rates, and loss rates of wireless links vary frequently. The QoS issues are very important in modern networks. There are many proposed service models and mechanisms to support QoS in wireline networks. Most of these QoS mechanisms are not suitable for direct application to the wireless network because of the characteristics of wireless communication which includes: 1) high error rates and bursty errors, 2) location-dependent and time-varying wireless channel capacity, 3) scarce bandwidth, 4) user mobility, and 5) power constraints of the mobile hosts. All of these above characteristics make the development of QoS in wireless networks very difficult and challenging. We try to cope with the bandwidth variations caused by the high error rate and bursty errors in wireless links, and the location-dependent and time-varying natures of wireless channel capacity. Furthermore, we expect to utilize the scarce wireless bandwidth more efficiently. In our proposed scheme, the higher priority flow is capable of broadcasting a message to inform the lower priority flows to change their priorities to adapt to environment variations. We will base on the differentiated service model and propose a Wireless Differentiation (WD) scheme for UDP flows and a Wireless Differentiation with Prioritized ACK (WDPA) scheme for connections with TCP flows which provide QoS support for IEEE 802.11b and do not change the basic access mechanism of IEEE 802.11b.
2

Analysis and improvement of medium access control protocols in wireless networks : performance modelling and Quality-of-Service enhancement of IEEE 802.11e MAC in wireless local area networks under heterogeneous multimedia traffic

Hu, Jia January 2010 (has links)
In order to efficiently utilize the scarce wireless resource as well as keep up with the ever-increasing demand for Quality-of-Service (QoS) of multimedia applications, wireless networks are undergoing rapid development and dramatic changes in the underlying technologies and protocols. The Medium Access Control (MAC) protocol, which coordinates the channel access and data transmission of wireless stations, plays a pivotal role in wireless networks. Performance modelling and analysis has been and continues to be of great theoretical and practical importance in the design and development of wireless networks. This research is devoted to developing efficient and cost-effective analytical tools for the performance analysis and enhancement of MAC protocols in Wireless Local Area Networks (WLANs) under heterogeneous multimedia traffic. To support the MAC-layer QoS in WLANs, the IEEE 802.11e Enhanced Distributed Channel Access (EDCA) protocol has proposed three QoS differentiation schemes in terms of Arbitrary Inter-Frame Space (AIFS), Contention Window (CW), and Transmission Opportunity (TXOP). This research starts with the development of new analytical models for the TXOP scheme specified in the EDCA protocol under Poisson traffic. A dynamic TXOP scheme is then proposed to adjust the TXOP limits according to the status of the transmission queue. Theoretical analysis and simulation experiments show that the proposed dynamic scheme largely improves the performance of TXOP. To evaluate the TXOP scheme in the presence of ii heterogeneous traffic, a versatile analytical model is developed to capture the traffic heterogeneity and model the features of burst transmission. The performance results highlight the importance of taking into account the heterogeneous traffic for the accurate evaluation of the TXOP scheme in wireless multimedia networks. To obtain a thorough and deep understanding of the performance attributes of the EDCA protocol, a comprehensive analytical model is then proposed to accommodate the integration of the three QoS schemes of EDCA in terms of AIFS, CW, and TXOP under Poisson traffic. The performance results show that the TXOP scheme can not only support service differentiation but also improve the network performance, whereas the AIFS and CW schemes provide QoS differentiation only. Moreover, the results demonstrate that the MAC buffer size has considerable impact on the QoS performance of EDCA under Poisson traffic. To investigate the performance of EDCA in wireless multimedia networks, an analytical model is further developed for EDCA under heterogeneous traffic. The performance results demonstrate the significant effects of heterogeneous traffic on the total delay and frame losses of EDCA with different buffer sizes. Finally, an efficient admission control scheme is presented for the IEEE 802.11e WLANs based on analytical modelling and a game-theoretical approach. The admission control scheme can maintain the system operation at an optimal point where the utility of the Access Point (AP) is maximized with the QoS constraints of various users.
3

Enhancing infotainment applications quality of service in vehicular ad hoc networks

Togou, Mohammed Amine 02 1900 (has links)
Les réseaux ad hoc de véhicules accueillent une multitude d’applications intéressantes. Parmi celles-ci, les applications d’info-divertissement visent à améliorer l’expérience des passagers. Ces applications ont des exigences rigides en termes de délai de livraison et de débit. De nombreuses approches ont été proposées pour assurer la qualité du service des dites applications. Elles sont réparties en deux couches : réseau et contrôle d’accès. Toutefois, ces méthodes présentent plusieurs lacunes. Cette thèse a trois volets. Le premier aborde la question du routage dans le milieu urbain. A cet égard, un nouveau protocole, appelé SCRP, a été proposé. Il exploite l’information sur la circulation des véhicules en temps réel pour créer des épines dorsales sur les routes et les connecter aux intersections à l’aide des nœuds de pont. Ces derniers collectent des informations concernant la connectivité et le délai, utilisées pour choisir les chemins de routage ayant un délai de bout-en-bout faible. Le deuxième s’attaque au problème d’affectation des canaux de services afin d’augmenter le débit. A cet effet, un nouveau mécanisme, appelé ASSCH, a été conçu. ASSCH collecte des informations sur les canaux en temps réel et les donne à un modèle stochastique afin de prédire leurs états dans l’avenir. Les canaux les moins encombrés sont sélectionnés pour être utilisés. Le dernier volet vise à proposer un modèle analytique pour examiner la performance du mécanisme EDCA de la norme IEEE 802.11p. Ce modèle tient en compte plusieurs facteurs, dont l’opportunité de transmission, non exploitée dans IEEE 802.11p. / The fact that vehicular ad hoc network accommodates two types of communications, Vehicle-to-Vehicle and Vehicle-to-Infrastructure, has opened the door for a plethora of interesting applications to thrive. Some of these applications, known as infotainment applications, focus on enhancing the passengers' experience. They have rigid requirements in terms of delivery delay and throughput. Numerous approaches have been proposed, at medium access control and routing layers, to enhance the quality of service of such applications. However, existing schemes have several shortcomings. Subsequently, the design of new and efficient approaches is vital for the proper functioning of infotainment applications. This work proposes three schemes. The first is a novel routing protocol, labeled SCRP. It leverages real-time vehicular traffic information to create backbones over road segments and connect them at intersections using bridge nodes. These nodes are responsible for collecting connectivity and delay information, which are used to select routing paths with low end-to-end delay. The second is an altruistic service channel selection scheme, labeled ASSCH. It first collects real-time service channels information and feeds it to a stochastic model that predicts the state of these channels in the near future. The least congested channels are then selected to be used. The third is an analytical model for the performance of the IEEE 802.11p Enhanced Distributed Channel Access mechanism that considers various factors, including the transmission opportunity (TXOP), unexploited by IEEE 802.11p.
4

Analysis and improvement of medium access control protocols in wireless networks. Performance modelling and Quality-of-Service enhancement of IEEE 802.11e MAC in wireless local area networks under heterogeneous multimedia traffic.

Hu, Jia January 2010 (has links)
In order to efficiently utilize the scarce wireless resource as well as keep up with the ever-increasing demand for Quality-of-Service (QoS) of multimedia applications, wireless networks are undergoing rapid development and dramatic changes in the underlying technologies and protocols. The Medium Access Control (MAC) protocol, which coordinates the channel access and data transmission of wireless stations, plays a pivotal role in wireless networks. Performance modelling and analysis has been and continues to be of great theoretical and practical importance in the design and development of wireless networks. This research is devoted to developing efficient and cost-effective analytical tools for the performance analysis and enhancement of MAC protocols in Wireless Local Area Networks (WLANs) under heterogeneous multimedia traffic. To support the MAC-layer QoS in WLANs, the IEEE 802.11e Enhanced Distributed Channel Access (EDCA) protocol has proposed three QoS differentiation schemes in terms of Arbitrary Inter-Frame Space (AIFS), Contention Window (CW), and Transmission Opportunity (TXOP). This research starts with the development of new analytical models for the TXOP scheme specified in the EDCA protocol under Poisson traffic. A dynamic TXOP scheme is then proposed to adjust the TXOP limits according to the status of the transmission queue. Theoretical analysis and simulation experiments show that the proposed dynamic scheme largely improves the performance of TXOP. To evaluate the TXOP scheme in the presence of ii heterogeneous traffic, a versatile analytical model is developed to capture the traffic heterogeneity and model the features of burst transmission. The performance results highlight the importance of taking into account the heterogeneous traffic for the accurate evaluation of the TXOP scheme in wireless multimedia networks. To obtain a thorough and deep understanding of the performance attributes of the EDCA protocol, a comprehensive analytical model is then proposed to accommodate the integration of the three QoS schemes of EDCA in terms of AIFS, CW, and TXOP under Poisson traffic. The performance results show that the TXOP scheme can not only support service differentiation but also improve the network performance, whereas the AIFS and CW schemes provide QoS differentiation only. Moreover, the results demonstrate that the MAC buffer size has considerable impact on the QoS performance of EDCA under Poisson traffic. To investigate the performance of EDCA in wireless multimedia networks, an analytical model is further developed for EDCA under heterogeneous traffic. The performance results demonstrate the significant effects of heterogeneous traffic on the total delay and frame losses of EDCA with different buffer sizes. Finally, an efficient admission control scheme is presented for the IEEE 802.11e WLANs based on analytical modelling and a game-theoretical approach. The admission control scheme can maintain the system operation at an optimal point where the utility of the Access Point (AP) is maximized with the QoS constraints of various users.

Page generated in 0.1098 seconds