• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Neutron-mapping polymer flow: scattering, flow visualization and molecular theory.

Bent, J., Hutchings, L.R., Richards, R.W., Gough, Timothy D., Spares, Robert, Coates, Philip D., Grillo, I., Harlen, O.G., Read, D.J., Graham, R.S. January 2003 (has links)
No / Flows of complex fluids need to be understood at both macroscopic and molecular scales, because it is the macroscopic response that controls the fluid behavior, but the molecular scale that ultimately gives rise to rheological and solid-state properties. Here the flow field of an entangled polymer melt through an extended contraction, typical of many polymer processes, is imaged optically and by small-angle neutron scattering. The dual-probe technique samples both the macroscopic stress field in the flow and the microscopic configuration of the polymer molecules at selected points. The results are compared with a recent "tube model" molecular theory of entangled melt flow that is able to calculate both the stress and the single-chain structure factor from first principles. The combined action of the three fundamental entangled processes of reptation, contour length fluctuation, and convective constraint release is essential to account quantitatively for the rich rheological behavior. The multiscale approach unearths a new feature: Orientation at the length scale of the entire chain decays considerably more slowly than at the smaller entanglement length.
2

Transport Phenomena of Entangled Polymer Melts:A Multi-Scale Simulation Study / からみあい高分子溶融体における移動現象:マルチスケールシミュレーションによる研究

Sato, Takeshi 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第22474号 / 工博第4735号 / 新制||工||1740(附属図書館) / 京都大学大学院工学研究科化学工学専攻 / (主査)教授 山本 量一, 教授 渡辺 宏, 准教授 谷口 貴志 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM

Page generated in 0.1401 seconds