Spelling suggestions: "subject:"entanglement entropy"" "subject:"entanglement syntropy""
1 |
Holographic studies of thermalization and dissipation in strongly coupled theoriesTangarife García, Walter Orlando 18 September 2014 (has links)
This thesis presents a series of studies of thermalization and dissipation in a variety of strongly coupled systems. The main tool for these investigations is the Gauge/Gravity duality, which establishes a correspondence between a d+1-dimensional quantum theory of gravity and a d-dimensional quantum field theory. We study the decay rates of fluctuations around the thermal equilibrium in theories in non-commutative geometry. Rapid thermalization of such fluctuations is found and motivates the conjecture that the phenomena at the black hole horizon is described by non-local physics. In the same type of environment, we analyze the Langevin dynamics of a heavy quark, which undergoes Brownian motion. We find that the late-time behavior of the displacement squared is unaffected by the non-commutativity of the geometry. In a different scenario, we study the correlation functions in theories with quantum critical points. We compute the response of these quantum critical points to a disturbance caused by a massive charged particle and analyze its late time behavior. Finally, we analyze systems far-from-equilibrium as they evolve towards a thermal state. We characterize this evolution for systems with chemical potential by focusing on the ``strong subadditivity" property of their entanglement entropy. This is achieved on the gravity side by using time dependent functions for mass and charge in an AdS-Vaydia metric. / text
|
2 |
Holographic Entanglement Entropy: RG Flows and Singular SurfacesSingh, Ajay 07 August 2012 (has links)
Over the past decade, the AdS/CFT correspondence has proven to be a remarkable tool to study various properties of strongly coupled field theories. In the context of the holography, Ryu and Takayanagi have proposed an elegant method to calculate entanglement entropy for these field theories. In this thesis, we use this holographic entanglement entropy to study a candidate c-theorem and entanglement entropy for singular surfaces.
We use holographic entanglement entropy for strip geometry and construct a candidate c-function in arbitrary dimensions. For holographic theories dual to Einstein gravity, this c-function is shown to decrease monotonically along RG flows. A sufficient condition required for this monotonic flow is that the stress tensor of the matter fields driving the holographic RG flow must satisfy the null energy condition over the holographic surface used to calculate the entanglement entropy. In the case where the bulk theory is described by Gauss-Bonnet gravity, the latter condition alone is not sufficient to establish the monotonic flow of the c-function. We also observe that for certain holographic RG flows, the entanglement entropy undergoes a ‘phase transition’ as the size of the system grows and as a result, evolution of the c-function may exhibit a discontinuous drop.
Then, we turn towards studying the holographic entanglement entropy for regions with a singular boundary in higher dimensions. Here, we find that various singularities make new universal contributions. When the boundary CFT has an even spacetime dimension, we find that the entanglement entropy of a conical surface contains a term quadratic in the logarithm of the UV cut-off. In four dimensions, the coefficient of this contribution is proportional to the central charge c. A conical singularity in an odd number of spacetime dimensions contributes a term proportional to the logarithm of the UV cut-off. We also study the entanglement entropy for various boundary surfaces with extended singularities. In these cases, extended singularities contribute through new linear or quadratic terms in logarithm only when the locus of the singularity is even dimensional and curved.
|
3 |
Holographic Entanglement Entropy: RG Flows and Singular SurfacesSingh, Ajay 07 August 2012 (has links)
Over the past decade, the AdS/CFT correspondence has proven to be a remarkable tool to study various properties of strongly coupled field theories. In the context of the holography, Ryu and Takayanagi have proposed an elegant method to calculate entanglement entropy for these field theories. In this thesis, we use this holographic entanglement entropy to study a candidate c-theorem and entanglement entropy for singular surfaces.
We use holographic entanglement entropy for strip geometry and construct a candidate c-function in arbitrary dimensions. For holographic theories dual to Einstein gravity, this c-function is shown to decrease monotonically along RG flows. A sufficient condition required for this monotonic flow is that the stress tensor of the matter fields driving the holographic RG flow must satisfy the null energy condition over the holographic surface used to calculate the entanglement entropy. In the case where the bulk theory is described by Gauss-Bonnet gravity, the latter condition alone is not sufficient to establish the monotonic flow of the c-function. We also observe that for certain holographic RG flows, the entanglement entropy undergoes a ‘phase transition’ as the size of the system grows and as a result, evolution of the c-function may exhibit a discontinuous drop.
Then, we turn towards studying the holographic entanglement entropy for regions with a singular boundary in higher dimensions. Here, we find that various singularities make new universal contributions. When the boundary CFT has an even spacetime dimension, we find that the entanglement entropy of a conical surface contains a term quadratic in the logarithm of the UV cut-off. In four dimensions, the coefficient of this contribution is proportional to the central charge c. A conical singularity in an odd number of spacetime dimensions contributes a term proportional to the logarithm of the UV cut-off. We also study the entanglement entropy for various boundary surfaces with extended singularities. In these cases, extended singularities contribute through new linear or quadratic terms in logarithm only when the locus of the singularity is even dimensional and curved.
|
4 |
Entanglement entropy of locally perturbed thermal systemsŠtikonas, Andrius January 2017 (has links)
In this thesis we study the time evolution of Rényi and entanglement entropies of thermal states in Conformal Field Theory (CFT). These quantities are usually hard to compute but Ryu-Takayanagi (RT) and Hubeny-Rangamani-Takayanagi (HRT) proposals allow us to find the same quantities using calculations in general relativity. We will introduce main concepts of holography, quantum information and conformal field theory that will be used to derive the results of this thesis. In the first part of the thesis, we explicitly compute entanglement entropy of the rotating BTZ black hole by directly applying HRT proposal and finding lengths of spacelike geodesics. Rényi entropy of thermal state perturbed by a local quantum quench is computed by mapping correlators on two glued cylinders to the plane for field theory containing a single free boson and for 2d CFTs in the large c limit. We consider Thermofield Double State (TFD) which is an entangled state in direct product of two 2D CFTs. It is conjectured to be holographically equivalent to the eternal BTZ black hole. TFD state is perturbed by a local quench in one CFT and mutual information between two intervals in two CFTs is computed. We find when mutual information vanishes and interpret this as scrambling time, i.e. time scale required for the system to thermalize. This field theory result is modelled with a massive free falling particle in the BTZ black hole. We have computed the back-reaction of the particle on the metric of BTZ and used RT proposal to find holographic entanglement entropy. Finally, we generalize this calculation to the case of rotating BTZ with inner and outer horizons. It is dual to the CFT with different temperatures for left and right moving modes. We calculate mutual information and scrambling time and find exact agreement between results in the gravity and those in the CFT.
|
5 |
Aspectos de complexidade em holografia / Aspects of complexity in holographySá, Felipe Soares 22 March 2018 (has links)
Recentemente, uma quantidade de informação/computação quântica chamada complexidade computacional tem adquirido mais e mais importância no estudo de buracos negros.Resumidamente, complexidade mede a dificuldade de alguma tarefa. No contexto de mecânica quântica (ou mesmo para estados em uma CFT), qualquer estado tem uma complexidade associada, uma vez que o processo de preparar algum estado, usando operações unitárias, é uma tarefa por sí só. Propostas holográficas para o cálculo de complexidade tem sido desenvolvidas nos anos recentes. Há duas delas que estão mais desenvolvidas: as conjecturas complexidade=volume e complexidade=ação. No contexto da correspondência AdS/CFT é sabido que o buraco negro de Schwarzschild em AdS é dual à um estado térmico que descreve duas CFTs emaranhadas. Para esse caso em específico, a conjectura complexidade=volume iguala a complexidade do estado que descreve esse par de CFTs emaranhadas com o volume da máxima superfície de codimensão um no espaço-tempo dual. Por outro lado, a conjectura complexidade=ação iguala a complexidade da borda com a ação gravitacional calculada sobre uma região do espaço-tempo conhecida como Wheeler-DeWitt patch. O objetivo dessa tese é proporcionar os requisitos necessários para entender as conjecturas relacionadas com complexidade, monstrando alguns resultados importantes proporcionados pelos cálculos holográficos no lado gravitacional. / In recent years, a quantity from quantum information/computation called computational complexity has been acquiring more and more importance in the study of black holes. Briefly, complexity measures the hardness of some task. In the context of quantum mechanics (or even for states in a CFT), any state has an associated complexity, once the process of to preparing some state, using unitary operations, is a task by itself. Holographic proposals for the computation of complexity have been developed in recent years. There are two of them that are more developed: the complexity=volume and complexity=action conjectures. In the context of the AdS/CFT correspondence, it is known that the two sided AdS-Schwarzschild black hole is dual to some thermal state that describes two entangled CFTs. For this specific case, the complexity=volume conjecture equates the complexity of the state that describes this pair of entangled CFTs with the volume of the maximal codimension-one surface in the dual space-time. On the other hand, the complexity=action conjecture equates the boundary complexity with the gravitational action evaluated on a region of space-time known as the Wheeler-DeWitt patch. The goal of this thesis is to provide the necessary requisites to understand the conjectures related to complexity, showing some important results provided by holographic computations on the gravitational side.
|
6 |
Aspectos de complexidade em holografia / Aspects of complexity in holographyFelipe Soares Sá 22 March 2018 (has links)
Recentemente, uma quantidade de informação/computação quântica chamada complexidade computacional tem adquirido mais e mais importância no estudo de buracos negros.Resumidamente, complexidade mede a dificuldade de alguma tarefa. No contexto de mecânica quântica (ou mesmo para estados em uma CFT), qualquer estado tem uma complexidade associada, uma vez que o processo de preparar algum estado, usando operações unitárias, é uma tarefa por sí só. Propostas holográficas para o cálculo de complexidade tem sido desenvolvidas nos anos recentes. Há duas delas que estão mais desenvolvidas: as conjecturas complexidade=volume e complexidade=ação. No contexto da correspondência AdS/CFT é sabido que o buraco negro de Schwarzschild em AdS é dual à um estado térmico que descreve duas CFTs emaranhadas. Para esse caso em específico, a conjectura complexidade=volume iguala a complexidade do estado que descreve esse par de CFTs emaranhadas com o volume da máxima superfície de codimensão um no espaço-tempo dual. Por outro lado, a conjectura complexidade=ação iguala a complexidade da borda com a ação gravitacional calculada sobre uma região do espaço-tempo conhecida como Wheeler-DeWitt patch. O objetivo dessa tese é proporcionar os requisitos necessários para entender as conjecturas relacionadas com complexidade, monstrando alguns resultados importantes proporcionados pelos cálculos holográficos no lado gravitacional. / In recent years, a quantity from quantum information/computation called computational complexity has been acquiring more and more importance in the study of black holes. Briefly, complexity measures the hardness of some task. In the context of quantum mechanics (or even for states in a CFT), any state has an associated complexity, once the process of to preparing some state, using unitary operations, is a task by itself. Holographic proposals for the computation of complexity have been developed in recent years. There are two of them that are more developed: the complexity=volume and complexity=action conjectures. In the context of the AdS/CFT correspondence, it is known that the two sided AdS-Schwarzschild black hole is dual to some thermal state that describes two entangled CFTs. For this specific case, the complexity=volume conjecture equates the complexity of the state that describes this pair of entangled CFTs with the volume of the maximal codimension-one surface in the dual space-time. On the other hand, the complexity=action conjecture equates the boundary complexity with the gravitational action evaluated on a region of space-time known as the Wheeler-DeWitt patch. The goal of this thesis is to provide the necessary requisites to understand the conjectures related to complexity, showing some important results provided by holographic computations on the gravitational side.
|
7 |
Holographic Entanglement Entropy in the dS/CFT Correspondence and Entanglement Entropy in the Sp(N) Model / dS/CFT対応におけるホログラフィック・エンタングルメント・エントロピーとSp(N)模型におけるエンタングルメント・エントロピーSato, Yoshiki 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第19494号 / 理博第4154号 / 新制||理||1597(附属図書館) / 32530 / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 川合 光, 教授 畑 浩之, 教授 田中 貴浩 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
8 |
Emergence of Spacetime: From Entanglement to EinsteinJanuary 2020 (has links)
abstract: Here I develop the connection between thermodynamics, entanglement, and gravity. I begin by showing that the classical null energy condition (NEC) can arise as a consequence of the second law of thermodynamics applied to local holographic screens. This is accomplished by essentially reversing the steps of Hawking's area theorem, leading to the Ricci convergence condition as an input, from which an application of Einstein's equations yields the NEC. Using the same argument, I show logarithmic quantum corrections to the Bekenstein-Hawking entropy formula do not alter the form of the Ricci convergence condition, but obscure its connection to the NEC. Then, by attributing thermodynamics to the stretched horizon of future lightcones -- a timelike hypersurface generated by a collection of radially accelerating observers with constant and uniform proper acceleration -- I derive Einstein's equations from the Clausius relation. Based on this derivation I uncover a local first law of gravity, connecting gravitational entropy to matter energy and work. I then provide an entanglement interpretation of stretched lightcone thermodynamics by extending the entanglement equilibrium proposal. Specifically I show that the condition of fixed volume can be understood as subtracting the irreversible contribution to the thermodynamic entropy. Using the AdS/CFT correspondence, I then provide a microscopic explanation of the 'thermodynamic volume' -- the conjugate variable to the pressure in extended black hole thermodynamics -- and reveal the super-entropicity of three-dimensional AdS black holes is due to the gravitational entropy overcounting the number of available dual CFT states. Finally, I conclude by providing a recent generlization of the extended first law of entanglement, and study its non-trivial 2+1- and 1+1-dimensional limits. This thesis is self-contained and pedagogical by including useful background content relevant to emergent gravity. / Dissertation/Thesis / Doctoral Dissertation Physics 2020
|
9 |
Introdução às Anomalias Conformes e os Teoremas C & F / Introduction to Conformal Anomalies and the C & F TheoremsNagaoka, Gabriel Nicolaz 22 March 2018 (has links)
As ideias fundamentais sobre entropia de emaranhamento e fluxos de renormalização são expostas, assim como uma introdução a CFTs e sua ligacão com a estrutura do espaco de parâmetros. A anomalia de traço é calculada em uma abordagem semi-clássica usando o método de heat kernel\" e regularização por função zeta . Mostramos que os coeficientes de Seeley-DeWitt são responsáveis pela quebra de simetria conforme em um espaço-tempo curvo de dimensão par, com isso alcançamos uma definição geométrica para as cargas centrais. A inexistência de anomalias no caso de dimensões ímpares também e mostrado. O C-theorem\", que prova a monotonicidade das cargas centrais sob o fluxo de renormalização, é demonstrado como feito por Zamolodchikov por meio de uma abordagem euclideana assumindo unitariedade, positividade por reflexão e condições de renormalizabilidade. A análise feita por Cardy também e demonstrada, nela considera-se os mesmos ingredientes. Por fim, a prova tecida por Casini & Huerta é demonstrada com detalhes, essa prova utiliza das propriedades de strong subadditivity da entropia de emaranhamento, unitariedade e invariância sob o grupo de Poincaré. Com isso, uma conexão com informação quântica é feita naturalmente. No último capítulo generalizamos o conceito de carga central para dimensões ímpares as definindo como o termo universal na entropia de emarahamento de uma esfera. As considerações geométricas feitas para provar o C-theorem\" são estendidas para um espaço-tempo de Minkowski com três dimensões. Como consequência temos a prova do F-theorem\" que é o analogo em três dimensões do C-theorem\". / The fundamental ideas of entanglement entropy and RG flows are laid out, as well as the basics of CFTs and its connection to the framework of RG flows. The trace anomaly is calculated in a semi-classical fashion by using the heat kernel method and zeta-function regularization. It is shown that the Seeley-DeWitt coefficients are responsible for the breaking of conformal symmetry in a curved even-dimensional background, which also achieves a geometrical definition of a central charge. The absence of anomalies in odd space-time dimensions is also contemplated. The C-theorem, which proves the monotonicity of the two dimensional central charge under RG flows, is demonstrated as first done by Zamolodchikov in an euclidean approach assuming unitarity, reflection positivity, and renormalizability conditions. Cardy\'s analysis is also demonstrated by considering the same conditions as Zamolodchikovs . And at last the proof via entanglement entropy by Casini & Huerta which relies on the strong subadditivity property of EE, unitarity and Poincaré invariance is explained in detail, providing a quantum information approach to the problem. In the last chapter a generalization of central charges to odd dimensional space-times is given through the universal term of the EE of a sphere. We provide the extension of the geometrical setup considered in the proof of the C-theorem to a three dimensional Minkowski space-time, which ultimately yields the F-theorem, constituting the three dimensional analog of the C-theorem.
|
10 |
Introdução às Anomalias Conformes e os Teoremas C & F / Introduction to Conformal Anomalies and the C & F TheoremsGabriel Nicolaz Nagaoka 22 March 2018 (has links)
As ideias fundamentais sobre entropia de emaranhamento e fluxos de renormalização são expostas, assim como uma introdução a CFTs e sua ligacão com a estrutura do espaco de parâmetros. A anomalia de traço é calculada em uma abordagem semi-clássica usando o método de heat kernel\" e regularização por função zeta . Mostramos que os coeficientes de Seeley-DeWitt são responsáveis pela quebra de simetria conforme em um espaço-tempo curvo de dimensão par, com isso alcançamos uma definição geométrica para as cargas centrais. A inexistência de anomalias no caso de dimensões ímpares também e mostrado. O C-theorem\", que prova a monotonicidade das cargas centrais sob o fluxo de renormalização, é demonstrado como feito por Zamolodchikov por meio de uma abordagem euclideana assumindo unitariedade, positividade por reflexão e condições de renormalizabilidade. A análise feita por Cardy também e demonstrada, nela considera-se os mesmos ingredientes. Por fim, a prova tecida por Casini & Huerta é demonstrada com detalhes, essa prova utiliza das propriedades de strong subadditivity da entropia de emaranhamento, unitariedade e invariância sob o grupo de Poincaré. Com isso, uma conexão com informação quântica é feita naturalmente. No último capítulo generalizamos o conceito de carga central para dimensões ímpares as definindo como o termo universal na entropia de emarahamento de uma esfera. As considerações geométricas feitas para provar o C-theorem\" são estendidas para um espaço-tempo de Minkowski com três dimensões. Como consequência temos a prova do F-theorem\" que é o analogo em três dimensões do C-theorem\". / The fundamental ideas of entanglement entropy and RG flows are laid out, as well as the basics of CFTs and its connection to the framework of RG flows. The trace anomaly is calculated in a semi-classical fashion by using the heat kernel method and zeta-function regularization. It is shown that the Seeley-DeWitt coefficients are responsible for the breaking of conformal symmetry in a curved even-dimensional background, which also achieves a geometrical definition of a central charge. The absence of anomalies in odd space-time dimensions is also contemplated. The C-theorem, which proves the monotonicity of the two dimensional central charge under RG flows, is demonstrated as first done by Zamolodchikov in an euclidean approach assuming unitarity, reflection positivity, and renormalizability conditions. Cardy\'s analysis is also demonstrated by considering the same conditions as Zamolodchikovs . And at last the proof via entanglement entropy by Casini & Huerta which relies on the strong subadditivity property of EE, unitarity and Poincaré invariance is explained in detail, providing a quantum information approach to the problem. In the last chapter a generalization of central charges to odd dimensional space-times is given through the universal term of the EE of a sphere. We provide the extension of the geometrical setup considered in the proof of the C-theorem to a three dimensional Minkowski space-time, which ultimately yields the F-theorem, constituting the three dimensional analog of the C-theorem.
|
Page generated in 0.0884 seconds