• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effect of Pressurization and Expulsion of Entrapped Air in Pipelines

Lee, Nahm Ho 20 July 2005 (has links)
Analytical and experimental laboratory studies were conducted for rapid pressurizing of entrapped gas at the end of a horizontal liquid pipeline. In this paper analytical and experimental model study are presented for pressurizing entrapped gas pocket at the end of a liquid column in a horizontal pipeline. Analytical models are considered such as (1) acoustic effect of both liquid and gas side, (2) variation of liquid length, and (3) thermal damping process. Closed form of solutions were derived for a lumped liquid and lumped gas model if pipeline is a horizontal. Experiments were conducted to verify the analytical models. Comparison of analytical and experimental model results were presented. Analytical model was developed to define the physics behind the gas venting case. Experiments were conducted for a range of orifice sizes from 1/16 to of the pipe diameter with reservoir pressure two, three and four times of ambient pressure for five different pipe configurations. Experimental results confirm the assumption of modified entrapped air model is correct.
2

Cement-based Materials' Characterization using Ultrasonic Attenuation

Punurai, Wonsiri 05 April 2006 (has links)
The quantitative nondestructive evaluation (NDE) of cement-based materials is a critical area of research that is leading to advances in the health monitoring and condition assessment of the civil infrastructure. Ultrasonic NDE has been implemented with varying levels of success to characterize cement-based materials with complex microstructure and damage. A major issue with the application of ultrasonic techniques to characterize cement-based materials is their inherent inhomogeneity at multiple length scales. Ultrasonic waves propagating in these materials exhibit a high degree of attenuation losses, making quantitative interpretations difficult. Physically, these attenuation losses are a combination of internal friction in a viscoelastic material (ultrasonic absorption), and the scattering losses due to the material heterogeneity. The objective of this research is to use ultrasonic attenuation to characterize the microstructure of heterogeneous cement-based materials. The study considers a real, but simplified cement-based material, cement paste - a common bonding matrix of all cement-based composites. Cement paste consists of Portland cement and water but does not include aggregates. First, this research presents the findings of a theoretical study that uses a set of existing acoustics models to quantify the scattered ultrasonic wavefield from a known distribution of entrained air voids. These attenuation results are then coupled with experimental measurements to develop an inversion procedure that directly predicts the size and volume fraction of entrained air voids in a cement paste specimen. Optical studies verify the accuracy of the proposed inversion scheme. These results demonstrate the effectiveness of using attenuation to measure the average size, volume fraction of entrained air voids and the existence of additional larger entrapped air voids in hardened cement paste. Finally, coherent and diffuse ultrasonic waves are used to develop a direct relationship between attenuation and water to cement (w/c) ratio. A phenomenological model based on the existence of fluid-filled capillary voids is used to help explain the experimentally observed behavior. Overall this research shows the potential of using ultrasonic attenuation to quantitatively characterize cement paste. The absorption and scattering losses can be related to the individual microstructural elements of hardened cement paste. By taking a fundamental, mechanics-based approach, it should be possible to add additional components such as scattering by aggregates or even microcracks in a systematic fashion and eventually build a realistic model for ultrasonic wave propagation study for concrete.
3

Advanced numerical and experimental transient modelling of water and gas pipeline flows incorporating distributed and local effects.

Kim, Young Il January 2008 (has links)
One of the best opportunities to reduce pipeline accidents and subsequent product loss comes from implementing better pipeline condition assessment and fault detection systems. Transient analysis model based condition assessment is the most promising technique because pressure transients propagate entire system interacting with the pipe and any devices in the system. Transient measurements embody a large amount of information about the physical characteristics of the system. The performance of this technique has its difficulties because a highly accurate transient model is required. Real systems have numerous uncertainties and flow system components that presents a major challenge in the development of precise transient analysis models. To improve transient modelling for the performance of condition assessment, this research undertakes a comprehensive investigation into the transient behaviour of distributed and various local energy loss system components in water and gas pipelines. The dynamic behaviours that have been investigated in this research are the effect of unsteady wall resistance, viscoelasticity effects of polymer pipe, and local energy loss elements including leakages, entrapped air pockets, orifices, and blockages during unsteady pipe flow conditions. The dynamic characteristics of these system components are modelled based on the conservative solution scheme using the governing equations in their conservative form. Use of the conservative form of the equations improves the sensitivity and applicability of transient analysis in both liquid and gas pipeline systems. The numerical model results are compared to laboratory experiments in water and gas pipelines to observe the interaction between transient pressure wave and system components and to verify the proposed models. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1337145 / Thesis( Ph.D.) -- University of Adelaide, School of Civil, Environmental and Mining Engineering 2008
4

Modélisation et simulation d'écoulements transitoires diphasiques eau-air dans les circuits hydrauliques / Modelling and simulation of transient air-water two-phase flows in hydraulic pipes

Demay, Charles 15 November 2017 (has links)
Ce travail est consacré à la modélisation mathématique et numérique des écoulements eau-air en conduite qui interviennent notamment dans les centrales de production d’électricité ou les réseaux d’eaux usées. On s’intéresse particulièrement aux écoulements mixtes caractérisés par la présence de régimes stratifiés pilotés par des ondes gravitaires lentes, de régimes en charge ou secs (conduite remplie d’eau ou d’air) pilotés par des ondes acoustiques rapides, et de poches d’air piégées. Une modélisation précise de ces écoulements est nécessaire afin de garantir le bon fonctionnement du circuit hydraulique sous-jacent. Alors que la plupart des modèles disponibles dans la littérature se concentrent sur la phase eau en négligeant la présence de l’air, un modèle bicouche compressible prenant en compte les interactions eau-air est proposé dans cette thèse. Sa construction réside dans l’intégration des équations d’Euler barotropes sur la hauteur de chaque phase et dans l’application de la contrainte hydrostatique sur le gradient de pression de l’eau. Le modèle obtenu est hyperbolique et satisfait une inégalité d’entropie en plus d’autres propriétés mathématiques notables, telles que l’unicité des relations de saut ou la positivité des hauteurs et densités de chaque phase. Au niveau discret, la simulation d’écoulements mixtes avec le modèle bicouche compressible soulève plusieurs défis en raison de la disparité des vitesses d’ondes caractérisant chaque régime, des processus de relaxation rapide sous-jacents, et de la disparition de l’une des phases dans les régimes en charge ou sec. Une méthode à pas fractionnaires implicite-explicite est alors développée en s’appuyant sur la relaxation rapide en pression et sur le mimétisme avec les équations de Saint-Venant pour la dynamique lente de la phase eau. En particulier, une approche par relaxation permet d’obtenir une stabilisation du schéma en fonction du régime d’écoulement. Plusieurs cas tests sont traités et démontrent la capacité du modèle proposé à gérer des écoulements mixtes incluant la présence de poches d’air piégées. / The present work is dedicated to the mathematical and numerical modelling of transient air-water flows in pipes which occur in piping systems of several industrial areas such as nuclear or hydroelectric power plants or sewage pipelines. It deals more specifically with the so-called mixed flows which involve stratified regimes driven by slow gravity waves, pressurized or dry regimes (pipe full of water or air) driven by fast acoustic waves and entrapped air pockets. An accurate modelling of these flows is necessary to guarantee the operability of the related hydraulic system. While most of available models in the literature focus on the water phase neglecting the air phase, a compressible two-layer model which accounts for air-water interactions is proposed herein. The derivation process relies on a depth averaging of the isentropic Euler set of equations for both phases where the hydrostatic constraint is applied on the water pressure gradient. The resulting system is hyperbolic and satisfies an entropy inequality in addition to other significant mathematical properties, including the uniqueness of jump conditions and the positivity of heights and densities for each layer. Regarding the discrete level, the simulation of mixed flows with the compressible two-layer model raises key challenges due to the discrepancy of wave speeds characterizing each regime combined with the fast underlying relaxation processes and with phase vanishing when the flow becomes pressurized or dry. Thus, an implicit-explicit fractional step method is derived. It relies on the fast pressure relaxation in addition to a mimetic approach with the shallow water equations for the slow dynamics of the water phase. In particular, a relaxation method provides stabilization terms activated according to the flow regime. Several test cases are performed and attest the ability of the compressible two-layer model to deal with mixed flows in pipes involving air pocket entrapment.

Page generated in 0.0615 seconds