• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 1
  • Tagged with
  • 34
  • 34
  • 34
  • 29
  • 29
  • 29
  • 29
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a Decision Support Methodology for the Design of Animal Waste Management Strategies to Achieve Regional Environmental Objectives

Anastasiou, Christos Charalambou 03 December 2002 (has links)
Management of waste from confined animal feeding operations is becoming increasingly important. While anaerobic lagoons and sprayfields are currently used for treatment, recent administrative initiatives call for their replacement. This decision has increased the need for characterization of the cost and treatment effectiveness of alternative technologies. However, due to variations in farm characteristics (e.g., size, location), identification of the most cost-effective combination of treatment technologies to achieve collective environmental goals requires an integrated approach (i.e. all combinations of treatment technology alternatives at all farms in a region must be considered simultaneously). The objective of this research was to develop a regional management decision-support framework to assist policy-makers, planners, and farmers in making cost effective lagoon replacement decisions to achieve desired treatment and public protection goals. A major component of the framework is a cost and treatment efficiency assessment tool to evaluate alternative animal waste treatment technologies for individual farms. Outputs from the assessment tool, together with geospatial data, feed into the regional management component of the framework, which consists of several formal optimization techniques that assist in the search for good decisions. Among these techniques are an optimization engine (integer programming) that can be used to find management strategies that meet cost and environmental targets, and a method for efficiently generating alternatives (Modeling to Generate Alternatives (MGA)). The management alternatives have similar cost and environmental performance but may behave differently for unmodeled objectives (e.g., risk or equity). Finally, the regional management framework includes an uncertainty analysis component that allows the evaluation of alternatives while taking into consideration the uncertainty in model inputs. The decision-support framework was demonstrated through an illustrative example; the regional waste management of swine farms in the Lower Neuse River watershed in eastern North Carolina to achieve a 30% reduction in nitrogen loading. Results show that 1) a regional management approach is essential for achieving cost savings, 2) there is significant flexibility in meeting the nitrogen reduction and cost targets, 3) consideration of uncertainty may lead to the selection of a different solution, 4) the decision support framework can be used successfully to address a range of concerns, including but not limited to cost, risk, equity, and uncertainty.
2

Implementation of Land Use and Land Use Change and its Effects on Biodiversity in Life Cycle Assessment

Oyewole, Ayodeji January 2010 (has links)
Land use refers to the use of land for intensive human activities aiming at exclusive use of land for certain purposes and adapting the properties of land areas in view of these purposes. Environmental problems are, however, generated as a result of these human activities which modify the shape and properties of large land areas according to the requirements of human activities and thereby excluding wild animals and plants from coexisting on such land areas and in their neighbourhoods. Land use also leads to the degradation of the natural environment. Life Cycle Assessment (LCA) methodology is used for evaluating the environmental burdens associated with products or processes while taking their whole life cycle into consideration. LCA is a comprehensive assessment method which considers all aspects of natural environment, human health, and resources. Land use is regarded as an impact category in Life Cycle Assessment and is treated as such. However, the environmental impacts associated with land use and land use change are not being adequately considered in LCA, if considered at all.Life Cycle Impact Assessment is a part of LCA and is aimed at understanding and evaluating the magnitude and significance of the potential environmental impacts of products or processes and this involves developing characterization factors which link an environmental impact to a category indicator. In the assessment of land use impacts, characterization factors are developed so as to weigh the magnitude of environmental interventions such as land occupation and land transformation on the potentially affected attributes of ecosystem quality such as biodiversity, ecological functions and natural resources.The goal of this study is to review the progress of the implementation of land use and land use change as an impact category in LCA with a particular focus on biodiversity, recognize limitations, and indicate future prospects for the development of land use impact assessment methodologies and subsequent integration into LCA. Land use impacts are not being widely integrated into LCA because they are dependent on the regional or local situation which is not well known in LCA and land use as an environmental intervention is very complex. However, the importance of land use cannot be overemphasized when assessing products or processes which make use of raw materials that originate from land extensive activities. Despite this importance, there have been diverse arguments on how to include land use impacts, for example, on biodiversity in LCA so as to provide a common and acceptable methodology for this assessment.This study focuses on how land use impacts can be included in LCA. With a particular focus on land use impacts on biodiversity, the result of this review shows that only a few studies have been carried out. The problem of non-convergence of the methodology for the assessment of land use in LCA still persists because most of the proposed methodologies deal with different aspects of land use impacts and are therefore conflicting.Most of the studies reviewed stress the importance of biodiversity measured in terms of vascular plant species diversity. However, there are other methodologies which consider other impact pathways such as life support functions. The number of studies thereby correlates with an increase in the interest in the research area. However, it is difficult to identify any trend of convergence. Different methods are being proposed which do not actually agree with one another. Some of these methods are not “closely” related to the use of land in the normal usage sense. Most of the methods being proposed are exemplified in different regions and these have not been found to be applicable to global cases. This could be a limiting factor for the applicability of the proposed methodologies in LCA. In order to overcome these shortcomings, more research work would be needed before these methodologies could be incorporated into LCA which is presumed to be a global assessment methodology. This will enhance the credibility of the results provided by an LCA and the subsequent acceptability of the LCA methodology.
3

Environmental Impacts of Renewable Energy : An Overview of Life Cycle Results

Hung, Christine January 2010 (has links)
Selected non-renewable and renewable energy processes from the ecoinvent 2.2 life cycle inventory database were analysed using basic contribution analysis, geometric series expansion, and structural path analysis. The hierarchical perspective of the ReCiPe impact assessment method was applied. The sources studied included biomass, wind, solar photovoltaic, hydropower, natural gas combined cycle and hard coal. Several technologies within each energy source were studied for comparison purposes. The processes were compared based on material consumption, land use and emissions for the production of 1 EJ (278 TWh). Results indicate that all of the renewable energy sources studied had a significantly lower impact than the non-renewable sources chosen. With the exception of bioenergies and pumped reservoir hydropower, technologies for the same energy source showed similar behaviour in the analyses performed.The findings from this study confirm previous work stating the environmental and human health superiority of renewable energy technologies over fossil fuel energy.
4

Implementation of Land Use and Land Use Change and its Effects on Biodiversity in Life Cycle Assessment

Oyewole, Ayodeji January 2010 (has links)
Land use refers to the use of land for intensive human activities aiming at exclusive use of land for certain purposes and adapting the properties of land areas in view of these purposes. Environmental problems are, however, generated as a result of these human activities which modify the shape and properties of large land areas according to the requirements of human activities and thereby excluding wild animals and plants from coexisting on such land areas and in their neighbourhoods. Land use also leads to the degradation of the natural environment. Life Cycle Assessment (LCA) methodology is used for evaluating the environmental burdens associated with products or processes while taking their whole life cycle into consideration. LCA is a comprehensive assessment method which considers all aspects of natural environment, human health, and resources. Land use is regarded as an impact category in Life Cycle Assessment and is treated as such. However, the environmental impacts associated with land use and land use change are not being adequately considered in LCA, if considered at all.Life Cycle Impact Assessment is a part of LCA and is aimed at understanding and evaluating the magnitude and significance of the potential environmental impacts of products or processes and this involves developing characterization factors which link an environmental impact to a category indicator. In the assessment of land use impacts, characterization factors are developed so as to weigh the magnitude of environmental interventions such as land occupation and land transformation on the potentially affected attributes of ecosystem quality such as biodiversity, ecological functions and natural resources.The goal of this study is to review the progress of the implementation of land use and land use change as an impact category in LCA with a particular focus on biodiversity, recognize limitations, and indicate future prospects for the development of land use impact assessment methodologies and subsequent integration into LCA. Land use impacts are not being widely integrated into LCA because they are dependent on the regional or local situation which is not well known in LCA and land use as an environmental intervention is very complex. However, the importance of land use cannot be overemphasized when assessing products or processes which make use of raw materials that originate from land extensive activities. Despite this importance, there have been diverse arguments on how to include land use impacts, for example, on biodiversity in LCA so as to provide a common and acceptable methodology for this assessment.This study focuses on how land use impacts can be included in LCA. With a particular focus on land use impacts on biodiversity, the result of this review shows that only a few studies have been carried out. The problem of non-convergence of the methodology for the assessment of land use in LCA still persists because most of the proposed methodologies deal with different aspects of land use impacts and are therefore conflicting.Most of the studies reviewed stress the importance of biodiversity measured in terms of vascular plant species diversity. However, there are other methodologies which consider other impact pathways such as life support functions. The number of studies thereby correlates with an increase in the interest in the research area. However, it is difficult to identify any trend of convergence. Different methods are being proposed which do not actually agree with one another. Some of these methods are not “closely” related to the use of land in the normal usage sense. Most of the methods being proposed are exemplified in different regions and these have not been found to be applicable to global cases. This could be a limiting factor for the applicability of the proposed methodologies in LCA. In order to overcome these shortcomings, more research work would be needed before these methodologies could be incorporated into LCA which is presumed to be a global assessment methodology. This will enhance the credibility of the results provided by an LCA and the subsequent acceptability of the LCA methodology.
5

Environmental Impacts of Renewable Energy : An Overview of Life Cycle Results

Hung, Christine January 2010 (has links)
Selected non-renewable and renewable energy processes from the ecoinvent 2.2 life cycle inventory database were analysed using basic contribution analysis, geometric series expansion, and structural path analysis. The hierarchical perspective of the ReCiPe impact assessment method was applied. The sources studied included biomass, wind, solar photovoltaic, hydropower, natural gas combined cycle and hard coal. Several technologies within each energy source were studied for comparison purposes. The processes were compared based on material consumption, land use and emissions for the production of 1 EJ (278 TWh). Results indicate that all of the renewable energy sources studied had a significantly lower impact than the non-renewable sources chosen. With the exception of bioenergies and pumped reservoir hydropower, technologies for the same energy source showed similar behaviour in the analyses performed.The findings from this study confirm previous work stating the environmental and human health superiority of renewable energy technologies over fossil fuel energy.
6

Life Cycle Assessment of an Active House : Sustainability concepts by integrating energy, environment and well-being

Ghose, Agneta January 2012 (has links)
An emerging interest in constructing ultra low energy buildings, with low impact materials and maximizing the potential of using renewable energy reflects the potential in building industry to significantly contribute towards reducing environmental impacts. Life cycle assessments of the different green building prototypes provide a means to estimate the impacts of such buildings as well as provide suggestive improvements. The Active house in Stjørdal, Norway is one such prototype of a green building. This is a single family residence which is built with a concept of solar architecture in ultra low-energy buildings. It is challenging to harness solar energy at high latitudes. The Active house uses the fundamental construction details for a Passive house as mentioned in Norwegian regulatory standard, with specific changes in increasing the glazed surface to promote passive solar heat gain as well as increase daylighting , but also making it vulnerable to heat loss. The house is based on timber framework. Apart from electricity the house uses solar collectors which are connected to the hot water storage and hydronic floor heating. Space heating is also compensated by use of wood stoves. In the LCA results suggest that, based on the construction the Active house requires ten percent more energy than an equivalent Passive house which uses only electricity and wood. However, due to the effectivity of the solar collectors, it compensates for the need of the extra energy and in a lifetime of 60 years, it performs 15 % better , contributing to lesser environmental impacts than an equivalent Passive house. It is understood that extra embodied energy does not affect the environmental performance of a building if it results in better environmental performance (1). However, it is important to create demonstrable value of the building for the end user. Lifecycle assessment results from simulated operational use carries considerable error with respect to how the building actually performs. The results in this study have also been estimated with an approximate error factor derived from previous studies (2). There is a necessity to make every stakeholder of the building participative in the functioning of the building, inclusive of the end user, and maintaining the well-being. The case has also been scored in the basic categories of a sustainibility certification, with the results available from the lifecycle assessment and energy simulation.
7

Sustainable Dwellings and Intergenerational Equality - New Applications for Ecological Economics : A Systems Thinking Approach

Klar, David January 2011 (has links)
A systems thinking based approach was used to define and investigate the current state of knowledge in the academic disciplines related to sustainable residential dwellings via literature review. Semi-structured interviews were conducted with respondents connected to the system definition. The goal of the study was to determine the extent to which the academic disciplines, as well as the respondents, incorporated the social, economic, environmental and intergenerational aspects of sustainability. Significant variation was found in both the disciplines as well as in the responses of interviewees. Life-cycle cost analysis of dwellings built to the Norwegian passive house standard was used to investigate the implications of using alternative discount factors for extended assumed life spans. The results indicated that alternative discount factors have the potential to significantly reduce rental costs while fulfilling the potential Pareto optimality criterion. The alternative discount factors used in the life-cycle cost analysis were later shown to have flaws which limit their usefulness; a methodology for deriving a representative multigenerational discount rate was proposed.
8

Life-Cycle assessment of Future High-speed Rail in Norway

Grossrieder, Carine January 2011 (has links)
The aim of this study is to provide an overview of the core factors for the environmental performance of future Norwegian high-speed rail (HSR) and to study their likely development up to 2050 in a life-cycle assessment (LCA) perspective. The analysis included the infrastructure, rolling stock and operations. This work was conducted with MiSA, an environmental consulting company based in Trondheim, Norway. MiSA recently completed a life-cycle inventory (LCI) for HSR in Norway. To start with, core factors were chosen through a literature review. The corridor Oslo-Trondheim was then modeled using the new LCI in order to establish a set of the core factors to analyze. The LCA was performed with SimaPro. LCA literature is the preferred source for emissions data. First because results show that emissions must cover life-cycle emissions from fuel, electricity, materials and processing (source-to-wheel). Second, LCA provides guidelines for good practice for environmental accounting and benchmarking of transport alternatives. Chapter 4 is an investigation of the core factors. Through the study of technical writings for current and future use of HSR in Norway, as well as sensitivity analyses, certain core factors were earmarked to produce detailed scenarios for future use up to 2050.Cement, steel, XPS, infrastructure, deforestation and the number of passengers per day are core factors. Cement, steel and XPS are the materials that have the most impact. The impact of the infrastructure of future Norwegian HSR is high because the number of passengers and the carbon footprint (CF) of the electricity mix used for operation are low. Norwegian HSR is lacking passengers. A high number of passengers in the Norwegian context constitutes a low number of passengers in other European countries. A high potential for change is to abstract passengers from air travel, which is the most used mode of transport in Norway in 2010. The energy used for operation and the energy per seat-km are not core factors because the electricity mix used for operation has a low CF (166 g CO2/kWh). The impact of HSR is reduced on average by 17% by updating the database (scenario updated 2010). The impact is reduced by 50% in a likely future (scenario 2050) by improving the production technology of the materials for the infrastructure and by having more passengers. Finally, the impact is reduced by 60% by, in addition to changes from scenario 2050, setting specific requirement to the suppliers and by having an active yield management (scenario 2050+).
9

Life Cycle Assessment of a Single-Family Residence built to Passive House Standard

Dahlstrøm, Oddbjørn January 2011 (has links)
Two complete cradle to grave life cycle assessments are conducted for the comparison of a house built after today’s building standard, TEK07, and a passive house built after the Norwegian Standard NS 3700:2010. Both houses are projected by the building company Nordbohus AS, and are to be constructed in Stord, on the west coast of Norway. The usable floor area, BRA, is 187 m2 for both houses, and a lifetime of 50 years is assumed. The houses are constructed with a wooden framework, insulated with mineral wool in the walls and roof, and have a ground lever floor of reinforced concrete on a layer of expanded polystyrene. The passive house has, compared to the TEK07 house a different foundation, 15 cm more mineral wool in the outer walls, 5 cm more in the roof, and better insulated windows and doors. In addition, the thermal conductivity for the outer wall insulation is reduced for the passive house. The house life cycle is divided into several phases. Construction of the house, waste treatment of materials connected to the construction, surface finish and maintenance of the house during the lifetime, water and electrical energy consumption during the house operation and finally demolition and waste treatment of the materials after the end of the house lifetime. Transportation of workers and materials to the construction site, as well as to waste treatment plant, are included. Generic data from Ecoinvent 2.0 database is used, but some processes are modified to satisfy Norwegian production information. The Nordel electricity mix is used for Norwegian production and house electricity consumption. SimaPro 7.1.8 is used to process the data, and the ReCiPe method, hierarchist midpoint version 1.03 is used for the impact assessment. It is assumed that both houses have the same heating system, and cover 100% of the energy needs from electrical energy. For the 50 year life cycle, the passive house has 20% less impacts to climate change than the TEK07 house. For the other categories assessed, the passive house has between 10-20% lower impacts than the TEK07 house. The only exception is impacts to freshwater ecotoxicity, where the passive house impacts are increased with 7% from the TEK07 house. The TEK07 house has impacts to climate change with 1,6 tons CO2 eq/m2 useful floor, while the passive house 1,3 tons CO2 eq/m2 useful floor. Cumulative energy demand is 55 GJ/m2 and 42 GJ/m2 respectively. The construction phase is responsible for 13%, waste treatment of materials connected to construction 1%, surface finish and maintenance 6% and end of life waste treatment 4% of overall climate change impacts for the TEK07 house. Water and electricity consumption during the operation are thus responsible of 76% of the TEK07 life cycle climate change impacts. For the passive house, this is 19%, 1%, 7%, 6% and 67% respectively. Main activities contributing to the overall impacts are transportation of materials, workers and waste to and from the construction site, diesel combusted in building machines, production and incineration of EPS/XPS and paint, waste treatment of wood ash, and production of cement and ceramic tiles.A sensitivity analysis of energy consumed by the construction dryer, frequency of house maintenance, a change of house consumption electricity mix to the Norwegian and UCTE electricity mix, and a change to different heating systems for both houses is carried out.The overall conclusion is that it is environmentally beneficial to build, operate and waste treat a passive house compared to a house following the TEK07 building standard.
10

Life Cycle Assessment of Scenarios for the Icelandic Vehicle Fleet

Vignisdóttir, Hrefna Rún January 2011 (has links)
Environmental issues, foremost global warming and climate change, are attracting more and more attention in world’ discussion as the global community constantly works on an agreement for actions to limit it. Global warming and climate change are human induced greenhouse effects that are a direct result of burning fossil fuels. Global warming is not the only problem of using fossil fuels. It is estimated that recoverable fossil energy reserves can only meet the demand for energy until 2050, if demand stabilizes at a current level. Iceland has commitments to reduce emissions contributing to global warming and as the transportation sector makes up a considerable proportion of the total emissions therefore the analysis of that sector is important. The overall aim of this report is therefore to analyze the life cycle emissions of the Icelandic vehicle fleet from 1990 to 2010 and then to develop possible and necessary scenarios for the future development of the fleet. Emissions of the Icelandic vehicle fleet are calculated using a life cycle approach. First the historical model used to calculate past emissions is defined along with the relevant parameters. Additional parameters for the scenario model, for three different scenarios: the reference; the green and the target, are presented and further calculations explained. The results show that emissions in the reference scenario increases continually and by 2050 it is over three and a half times higher than the emission reduction target, while the green scenario, which assumes moderate measures, is over 2.6 times higher. The target scenario, being the only scenario getting close to the target, has a reduction in emissions at 67% by 2050 compared to 2010. The model gives a clear indication of the development of the service provided, and shows that there is little reduction in the population’s overall mobility in the reference and green scenarios, while the kilometers driven per person returns to 1990 level in the target scenario. The model indicates that reaching the emission reduction goal that the Icelandic government has announced seems very unlikely if all sectors are to reduce emissions equally. It is clear that action needs to be taken immediately in Iceland and elsewhere if international goals are to be kept.

Page generated in 0.1842 seconds