Spelling suggestions: "subject:"environnement markovian"" "subject:"environnement markovianos""
1 |
Ruine et investissement en environnement markovien / Ruin and investment in a Markovian environmentDinetan, Lee 02 November 2015 (has links)
L'objet de cette thèse est de modéliser et optimiser les stratégies d'investissement d'un agent soumis à un environnement markovien, et à un risque de liquidité se déclarant quand il ne peut plus faire face à une sortie d'argent faute d'actifs liquides. Durant cette étude, nous supposerons que son objectif est d'éviter la faillite ; il dispose pour cela d'opportunités d'investissement, lui permettant d'accroître ses gains futurs en échange d'une dépense immédiate, risquant ainsi une ruine prématurée puisque l'investissement est supposé illiquide : le but du travail est de déterminer les conditions sous lesquelles il est plus judicieux de courir un tel risque de liquidité que de renoncer à un revenu permanent. / This thesis aims at modelling and optimize an agent's (called "he") investment strategies when subjected to a Markovian environment, and to a liquidity risk happening when he runs out of liquid assets during an expense. Throughout this work, we deem that he aims at avoiding default; for this purpose, investment opportunities are available to him, allowing to increase his future expected incomes at the price of an immediate expense, therefore risking premature bankruptcy since investment is deemed illiquid: our goal is to find conditions under which incurring such liquidity risks is more advisable than declining a permanent income.
|
2 |
Modèles de dépendance dans la théorie du risqueBargès, Mathieu 15 March 2010 (has links) (PDF)
Initialement, la théorie du risque supposait l'indépendance entre les différentes variables aléatoires et autres paramètres intervenant dans la modélisation actuarielle. De nos jours, cette hypothèse d'indépendance est souvent relâchée afin de tenir compte de possibles interactions entre les différents éléments des modèles. Dans cette thèse, nous proposons d'introduire des modèles de dépendance pour différents aspects de la théorie du risque. Dans un premier temps, nous suggérons l'emploi des copules comme structure de dépendance. Nous abordons tout d'abord un problème d'allocation de capital basée sur la Tail-Value-at-Risk pour lequel nous supposons un lien introduit par une copule entre les différents risques. Nous obtenons des formules explicites pour le capital à allouer à l'ensemble du portefeuille ainsi que la contribution de chacun des risques lorsque nous utilisons la copule Farlie-Gumbel-Morgenstern. Pour les autres copules, nous fournissons une méthode d'approximation. Au deuxième chapitre, nous considérons le processus aléatoire de la somme des valeurs présentes des sinistres pour lequel les variables aléatoires du montant d'un sinistre et de temps écoulé depuis le sinistre précédent sont liées par une copule Farlie-Gumbel-Morgenstern. Nous montrons comment obtenir des formes explicites pour les deux premiers moments puis le moment d'ordre m de ce processus. Le troisième chapitre suppose un autre type de dépendance causée par un environnement extérieur. Dans le contexte de l'étude de la probabilité de ruine d'une compagnie de réassurance, nous utilisons un environnement markovien pour modéliser les cycles de souscription. Nous supposons en premier lieu des temps de changement de phases de cycle déterministes puis nous les considérons ensuite influencés en retour par les montants des sinistres. Nous obtenons, à l'aide de la méthode d'erlangisation, une approximation de la probabilité de ruine en temps fini.
|
3 |
Modèles de dépendance dans la théorie du risque / Dependence models in risk theoryBargès, Mathieu 15 March 2010 (has links)
Initialement, la théorie du risque supposait l’indépendance entre les différentes variables aléatoires et autres paramètres intervenant dans la modélisation actuarielle. De nos jours, cette hypothèse d’indépendance est souvent relâchée afin de tenir compte de possibles interactions entre les différents éléments des modèles. Dans cette thèse, nous proposons d’introduire des modèles de dépendance pour différents aspects de la théorie du risque. Dans un premier temps, nous suggérons l’emploi des copules comme structure de dépendance. Nous abordons tout d’abord un problème d’allocation de capital basée sur la Tail-Value-at-Risk pour lequel nous supposons un lien introduit par une copule entre les différents risques. Nous obtenons des formules explicites pour le capital à allouer à l’ensemble du portefeuille ainsi que la contribution de chacun des risques lorsque nous utilisons la copule Farlie-Gumbel-Morgenstern. Pour les autres copules, nous fournissons une méthode d’approximation. Au deuxième chapitre, nous considérons le processus aléatoire de la somme des valeurs présentes des sinistres pour lequel les variables aléatoires du montant d’un sinistre et de temps écoulé depuis le sinistre précédent sont liées par une copule Farlie-Gumbel-Morgenstern. Nous montrons comment obtenir des formes explicites pour les deux premiers moments puis le moment d’ordre m de ce processus. Le troisième chapitre suppose un autre type de dépendance causée par un environnement extérieur. Dans le contexte de l’étude de la probabilité de ruine d’une compagnie de réassurance, nous utilisons un environnement markovien pour modéliser les cycles de souscription. Nous supposons en premier lieu des temps de changement de phases de cycle déterministes puis nous les considérons ensuite influencés en retour par les montants des sinistres. Nous obtenons, à l’aide de la méthode d’erlangisation, une approximation de la probabilité de ruine en temps fini. / Initially, it was supposed in risk theory that the random variables and other parameters of actuarial models were independent. Nowadays, this hypothesis is often relaxed to take into account possible interactions. In this thesis, we propose to introduce some dependence models for different aspects of risk theory. In a first part, we use copulas as dependence structure. We first tackle a problem of capital allocation based on the Tail-Value-at-Risk where the risks are supposed to be dependent according to a copula. We obtain explicit formulas for the capital to be allocated to the overall portfolio but also for the contribution of each risk when we use a Farlie-Gumbel-Morenstern copula. For the other copulas, we give an approximation method. In the second chapter, we consider the stochastic process of the discounted aggregate claims where the random variables for the claim amount and the time since the last claim are linked by a Farlie-Gumbel-Morgenstern copula. We show how to obtain exact expressions for the first two moments and for the moment of order m of the process. The third chapter assumes another type of dependence that is caused by an external environment. In the context of the study of the ruin probability for a reinsurance company, we use a Markovian environment to model the underwriting cycles. We suppose first deterministic cycle phase changes and then that these changes can also be influenced by the claim amounts. We use the erlangization method to obtain an approximation for the finite time ruin probability.
|
4 |
Modélisation et estimation des processus de dégradation avec application en fiabilité des structuresChiquet, Julien 21 June 2007 (has links) (PDF)
Nous décrivons le niveau de dégradation caractéristique d'une structure à l'aide d'un processus stochastique appelé processus de dégradation. La dynamique de ce processus est modélisée par un système différentiel à environnement markovien.<br /><br />Nous étudions la fiabilité du système en considérant la défaillance de la structure lorsque le processus de dégradation dépasse un seuil fixe. Nous obtenons la fiabilité théorique à l'aide de la théorie du renouvellement markovien.<br /><br />Puis, nous proposons une procédure d'estimation des paramètres des processus aléatoires du système différentiel. Les méthodes d'estimation et les résultats théoriques de la fiabilité, ainsi que les algorithmes de calcul associés, sont validés sur des données simulés.<br /><br />Notre méthode est appliquée à la modélisation d'un mécanisme réel de dégradation, la propagation des fissures, pour lequel nous disposons d'un jeu de données expérimental.
|
Page generated in 0.0846 seconds