Spelling suggestions: "subject:"anzyme catalysis"" "subject:"anzyme atalysis""
11 |
Ammonia Production at Ambient Temperature and Pressure: An Electrochemical and Biological ApproachPaschkewitz, Timothy Michael 01 July 2012 (has links)
The majority of power generated worldwide is from combustion of fossil fuels. The sustainability and environmental impacts of this non renewable process are severe. Alternative fuels and power generation systems are needed, however, to cope with increasing energy demands. Ammonia shows promise for use in power generation, however it is costly to produce and very few methods of using it as a fuel are developed. To address the need for alternative methods of ammonia synthesis, this research designed and tested a bioelectrochemical device that generates NH3 through electrode induced enzyme catalysis. The ammonia generating device consists of an electrode modified with a polymer that contains whole cell Anabaena variabilis, a photosynthetic cyanobacterium. A. variabilis contains nitrogenase and nitrate/nitrite reductase, catalysts for the production of ammonia. In this system, the electrode supplies driving force and generates a reductive microenvironment near cells to facilitate enzymatic production of NH3 at ambient temperatures and pressures.
Farm animal wastes contain significant amounts of NO2- and NO3-, which can leech into groundwater sources and contaminate them. The system described here recycles NO2- and NO3- to NH4sup+ by the nitrate/nitrite reductase enzyme. Unlike nitrogen fixation by the nitrogenase enzyme whose substrate is atmospheric N2, the substrates for nitrate/nitrite reductase are NO2- and NO3-. The ammonia produced by this system shows great potential as a crop fertilizer.
While the substrates and enzymatic basis for ammonia production by nitrogenase and nitrate/nitrite reductase are very different, there is utility in the comparison of commercially produced ammonia by the Haber Bosch synthesis and by the bioelectrocatalytic device described here. In one day, the Haber Bosch process produces 1800 tons of NH3 at an energetic cost of $500/ton. Per ton of ammonia, the Haber Bosch process consumes 28 GJ of energy. The bioelectrocatalytic device produces 1 ton of NH3 for $10/ton, consuming only 0.04 GJ energy, which can be obtained by sunlight via installation of a photovoltaic device. Thus, the system presented here demonstrates ammonia production with significant impact to the economy.
NH3 production by the bioelectrocatalytic is dependent upon A. var. cell density and electrode polarization. The faradaic current response from cyclic voltammetry is linearly related to cell density and ammonia production. Without electrode polarization, immobilized A. var. do not produce ammonia above the basal level of 2.8 ± 0.4 ΜM. Ten minutes after cycled potential is applied across the electrode, average ammonia output increases to 22 ± 8 ΜM depending on the mediator and substrate chemicals present. Ammonia is produced by this system at 25 °℃ and 1 atm. The electrochemical basis for enhanced NH3 by immobilized cyanobacteria is complex with multiple levels of feedback.
|
12 |
Theoretical studies of mononuclear non-heme iron active sitesBassan, Arianna January 2004 (has links)
The quantum chemical investigations presented in this thesis use hybrid density functional theory to shed light on the catalytic mechanisms of mononuclear non-heme iron oxygenases, accommodating a ferrous ion in their active sites. More specifically, the dioxygen activation process and the subsequent oxidative reactions in the following enzymes were studied: tetrahydrobiopterin-dependent hydroxylases, naphthalene 1,2-dioxygenase and α-ketoglutarate-dependent enzymes. In light of many experimental efforts devoted to the functional mimics of non-heme iron oxygenases, the reactivity of functional analogues was also examined. The computed energetics and the available experimental data served to assess the feasibility of the reaction mechanisms investigated. Dioxygen activation in tetrahydrobiopterin- and α-ketoglutarate-dependent enzymes were found to involve a high-valent iron-oxo species, which was then capable of substrate hydroxylation. In the case of naphthalene 1,2-dioxygenase, the reactivity of an iron(III)-hydroxperoxo species toward the substrate was investigated and compared to the biomimetic counterpart.
|
13 |
Combinatorial reshaping of the Candida antarctica lipase A substrate pocket for enantioselectivity using an extremely condensed librarySandström, Anders G., Wikmark, Ylva, Engström, Karin, Nyhlén, Jonas, Bäckvall, Jan-E. January 2012 (has links)
A highly combinatorial structure-based protein engineering method for obtaining enantioselectivity is reported that results in a thorough modification of the substrate binding pocket of Candida antarctica lipase A (CALA). Nine amino acid residues surrounding the entire pocket were simultaneously mutated, contributing to a reshaping of the substrate pocket to give increased enantioselectivity and activity for a sterically demanding substrate. This approach seems to be powerful for developing enantioselectivity when a complete reshaping of the active site is required. Screening toward ibuprofen ester 1, a substrate for which previously used methods had failed, gave variants with a significantly increased enantioselectivity and activity. Wild-type CALA has a moderate activity with an E value of only 3.4 toward this substrate. The best variant had an E value of 100 and it also displayed a high activity. The variation at each mutated position was highly reduced, comprising only the wild type and an alternative residue, preferably a smaller one with similar properties. These minimal binary variations allow for an extremely condensed protein library. With this highly combinatorial method synergistic effects are accounted for and the protein fitness landscape is explored efficiently.
|
14 |
Mechanistic studies of two enzymes that employ common coenzymes in uncommon waysThibodeaux, Christopher James 13 November 2013 (has links)
Enzymes are biological catalysts which greatly accelerate the rates of chemical reactions, oftentimes by many orders of magnitude over the uncatalyzed reaction. The remarkable catalytic rate enhancement afforded by enzymes derives ultimately from the structure and chemical properties of the enzyme active sites, which allow enzymes to selectively bind to their substrates and to stabilize high energy chemical species and unstable intermediates along the reaction coordinate. To enhance their catalytic ability, many enzymes have also evolved to require coenzymes for optimal activity. These coenzymes often provide chemical functionality and reactivity that are not accessible by the twenty canonical amino acids and, hence, coenzymes serve to greatly enhance the diversity of chemical reactions that can be mediated by enzymes. The work described in this dissertation focuses on mechanistic studies of two enzymes that use common coenzymes in unusual ways. In the first section of this work, studies will focus on the type II isopentenyl diphosphate:dimethylallyl diphosphate isomerase (IDI-2), an essential enzyme in isoprenoid biosynthesis that employs a flavin mononucleotide (FMN) coenzyme for catalysis. In most biological systems, flavin coenzymes mediate electron transfer reactions. However, the IDI-2 catalyzed reaction involves no net redox change, raising questions as to the role of the flavin in the chemical mechanism. The chemical mechanism of IDI-2 will be interrogated with a combination of spectroscopic studies and biochemical techniques. Our studies suggest that the flavin coenzyme of IDI-2 may employ a novel mode of flavin-dependent catalysis involving acid/base chemistry. In the second section of this dissertation, attention will be focused on elucidating the chemical mechanism of 1-aminocyclopropane-1-carboxylate deaminase (ACCD), an enzyme that plays a role in regulating the production of the potent plant hormone, ethylene. ACCD is a pyridoxal-5ʹ-phosphate (PLP)-dependent enzyme that catalyzes a C-C bond cleavage event that is unique among the catalytic cycles of PLP-dependent enzymes. Altogether, our mechanistic studies of IDI-2 and ACCD help to illustrate the catalytic diversity of common coenzymes, and demonstrate that some enzymes have evolved to exploit readily available coenzymes for atypical reactions. / text
|
15 |
Fatty acid amide hydrolase mediated endocannabinoid signaling in an early land plant, Physcomitrella patensHaq, MD, Kilaru, Aruna 12 April 2019 (has links)
Fatty acid amide hydrolase (FAAH) belongs to a diverse class of enzymes in amidase signature family. In mammals, FAAH is targeted to affect neurological functions because it terminates endocannabinoid signaling by degrading anandamide, a 20C N-acylethanolamine (NAE 20:4). In higher plants, FAAH is known to modulate growth, development and stress tolerance by degrading 12-18C NAEs. Since anandamide was reported to exclusively occur in early land plants, we investigated its metabolic pathway in the moss Physcomitrella patens. Based on the highest identity with ratFAAH, we identified nine orthologs in moss, PpFAAH1 to PpFAAH9. Several bioinformatic tools were used to understand the structural basis of how catalytic residues fold for amidohydrolase activity. Based on these in silicoanalyses of PpFAAHhomologs and their gene expression in response to saturated (NAE16:0) and unsaturated NAE (NAE 20:4) treatment, PpFAAH1was selected for biochemical characterization. Heterologously expressed PpFAAH1 showed highest amidohydrolase activity at 37°C and pH 8.0. Both in vivoand in vitrostudies showed that unsaturated NAE substrate is hydrolyzed faster than the saturated NAE (> 10-fold in vivoand50-fold in vitro). Additionally, transgenic moss lines over expressing FAAH1 showed slower growth and disrupted gametophyte formation when compared to wild type. These data suggest that PpFAAH1-mediated NAE metabolism is likely involved in developmental transition in moss.
|
16 |
Using Molecular Dynamics to Elucidate the Mechanism of CyclophilinMcGowan, Lauren 09 May 2014 (has links)
Cyclophilins are ubiquitous enzymes that are involved in protein folding, signal transduction, viral proliferation, oncogenesis, and regulation of the immune system. Cyclophilin A is the prototype of the cyclophilin family. We use molecular dynamics to describe the catalytic mechanism of cyclophilin A in full atomistic detail by sampling critical points along the reaction coordinate, and use accelerated molecular dynamics to sample cis-trans interconversions. At these critical points, we analyze the conformational space sampled by the active site, flexibility of the enzyme backbone, and modulation of binding interactions.We use Kramer’s rate theory to determine how diffusion and free energy contribute to lowering the activation energy of prolyl isomerization. We also find preferential binding modes of several cyclophiln A inhibitors, and compare the conformational space sampled by inhibited cyclophilin A to the conformational space sampled during wild-type interactions. We also analyze the mechanism of the next family member cyclophilin B in order to probe differences in enzyme dynamics and intermolecular interactions that could possibly be exploited in isoform-specific drug design. Our results indicate that cyclophilin proceeds by a conformational selection binding mechanism that manipulates substrate sterics, electrostatic interactions, and multiple reaction timescales in order to speed up reaction rate. Conformational space sampled by cyclophilin when inhibited and when undergoing wild-type interactions share significant similarity. Cyclophilins A and B do have notable differences in enzyme dynamics, due to variation in intramolecular interactions that arise from variation in primary structures. This work demonstrates how computational methods can be used to clarify catalytic mechanisms.
|
17 |
Exploring Conjugate Addition Activity in <em>Pseudozyma antarctica</em> Lipase BSvedendahl, Maria January 2009 (has links)
<p>Multifunctional enzymes have alternative functions or activities, known as “moonlighting” or “promiscuous”, which are often hidden behind a native enzyme activity and therefore only visible under special environmental conditions. In this thesis, the active-site of Pseudozyma (formerly Candida) antarctica lipase B was explored for a promiscuous conjugate addition activity. Pseudozyma antarctica lipase B is a lipase industrially used for hydrolysis or transacylation reactions. This enzyme contains a catalytic triad, Ser105-His224-Asp187, where a nucleophilic attack from Ser105 on carboxylic acid/ester substrates cause the formation of an acyl enzyme. For conjugate addition activity in Pseudozyma antarctica lipase B, replacement of Ser105 was assumed necessary to prevent competing hemiacetal formation. However, experiments revealed conjugate addition activity in both wild-type enzyme and the Ser105Ala variant. Enzyme-catalyzed conjugate additions were performed by adding sec-amine, thiols or 1,3-dicarbonyl compounds to various α,β-unsaturated carbonyl compounds in both water or organic solvent. The reactions followed Michaelis-Menten kinetics and the native ping pong bi bi reaction mechanism of Pseudozyma antarctica lipase B for hydrolysis/transacylation was rerouted to a novel ordered bi uni reaction mechanism for conjugate addition (Paper I, II, III). The lipase hydrolysis activity was suppressed more than 1000 times by the replacement of the nucleophilic Ser105 to Ala (Paper III).</p>
|
18 |
Caracterização biofísica da dinâmica catalítica de uma xilanase GH11 / Biophysical characterization of the catalytic dynamics of a GH11 xylanaseMolina, Gustavo Avelar 29 February 2016 (has links)
A dinâmica estrutural fundamentando a função das xilanases GH11 ainda não está clara. Novo conhecimento sobre a dinâmica catalítica dessas enzimas é crucial para a engenharia de novas enzimas melhoradas beneficiando, assim, diversas indústrias biotecnológicas e de química verde. Com base nesse fato, esse trabalho teve por objetivo obter novas informações acerca da dinâmica catalítica de uma xilanase GH11, através do uso de um conjunto de diversas técnicas avançadas de biofísica molecular em nível bulk e em nível de molécula única (inglês single molecule ou sm). Para isso, foram projetadas xilanases GH11 de Bacillus subtilis ssp. subtilis 168 (XynA) com mutações únicas de cisteína para a marcação dos resíduos D119 e R122 no domínio polegar, do resíduo N54 no domínio dedos, e do resíduo N151 na alfa-hélice, seguidas pela sua construção e produção por métodos de biologia molecular. Esses mutantes foram marcados em seus respectivos grupos tióis com a sonda fluorescente sensível à polaridade Acrylodan, com a sonda de spin MTSSL, e com a sonda fluorescente fotoestável AttoOxa11. A xilanase tipo selvagem for marcada em seu N-terminal com a sonda fotoestável Alexa Fluor® 488 5-SDP Ester. Foram utilizados ensaios de espectrofotometria de fluorescência em nível bulk e de espectroscopia de ressonância paramagnética eletrônica para investigar como a dinâmica do domínio polegar da xilanase GH11, temperatura, e ligação ao substrato se correlacionam um com o outro. Os resultados atestaram que um estado do domínio polegar controlado por temperatura, aberto, dinâmico e flexível tem mais chances de se ligar efetivamente ao substrato de uma maneira produtiva, o que está em completo acordo com estudos anteriores de simulação de dinâmica molecular, cristalografia, desnaturação térmica, e análise funcional por desenho racional de mutantes de domínio polegar de xilanases GH11. Com base nas evidências adquiridas e em estudos anteriores, nós propomos um conjunto de hipóteses e modelos para a dinâmica catalítica da xilanase, focando no papel do domínio polegar nesse processo. No intuito de determinar a constante de afinidade da xilanase por seu substrato e os tempos de relaxamento e constantes de velocidade dos movimentos do domínio polegar, foram feitas medidas de espectroscopia de correlação de fluorescência simples e combinada com transferência eletrônica fotoinduzida, usando as xilanases marcadas com as sondas fluorescentes fotoestáveis, na presença e na ausência de substrato. Os resultados mostraram tempos de difusão muito maiores para as xilanases na presença de substrato, como efeito da afinidade da enzima pelo mesmo. Entretanto, não foi verificada nenhuma curva de decaimento como efeito de supressão dinâmica da sonda por PET. Esses mesmos conjugados foram aplicados com sucesso em microscopia por imagem de tempo de vida de fluorescência, no intuito de analisar sistematicamente a afinidade da xilanase por partículas insolúveis e filmes de substrato, e por fragmentos insolúveis de frações de processos de deslignificação e desestruturação de bagaço de cana-de-açúcar, assim como para a análise da composição, estrutura e topologia desses materiais. Foi possível verificar a presença de xilano na maioria das frações desse bagaço tratado, mas em quantidades variáveis / The structural dynamics underlying the function of GH11 xylanases is still unclear. New insights into the catalytic dynamics of these enzymes are crucial for engineering novel improved enzymes benefiting biotechnological and green chemistry industries. The objective of this work was to obtain new information concerning the catalytic dynamics of a GH11 xylanase, by using a combination of advanced molecular biophysics techniques, both at the bulk level and at the single molecule level (sm). Mutant GH11 xylanases from Bacillus subtilis ssp. subtilis 168 (XynA) were designed with single point cysteine mutations for labeling the residues D119 and R122 on the thumb domain, N54 on the fingers domain, and N151 on the alpha helix, followed by their construction and production by molecular biology methods. These mutants were labeled at their respective thiol groups by the polarity sensitive fluorescent probe Acrylodan, by the electron spin probe MTSSL, and by the photostable fluorescent probe AttoOxa11. The wild-type xylanase was labeled at its N-terminus by the photostable fluorescent probe Alexa Fluor® 488 5-SDP Ester. Bulk fluorescence spectrophotometry and electron paramagnetic resonance assays were used to investigate how the thumb domain dynamics of the GH11 xylanase, temperature and substrate binding were correlated. These results demonstrated that a temperature controlled, open, dynamical and flexible thumb domain state is more likely to effectively bind the substrate in a productive way, which is in complete agreement with previous studies from molecular dynamics simulations, crystallography, thermal denaturation, and function analysis by the rational design of thumb mutants for GH11 xylanases. Based on this evidence and previous studies, we proposed a hypothesis for the xylanase catalytic dynamics, focusing on the role of the thumb domain. In order to determine the xylanase affinity constant for its substrate and the relaxation times and rate constants of the thumb domain movements, fluorescence correlation spectroscopy measurements were performed. Both simple and combined measurements with photoinduced electron transfer were performed, using the xylanases labeled with photostable fluorescent probes, in the presence and absence of substrate. The results have shown longer diffusion times for the xylanases in the presence of substrate, as an effect of the enzyme affinity for it. However, it was not verified any decay curve as an effect of the dynamic suppression of the probe via PET. The same conjugates were successfully applied to fluorescence-lifetime imaging microscopy, aiming to systematically analyze the affinity for xylanase of substrates in the form of insoluble particles and films, and for water insoluble fractions from sugarcane bagasse delignification processes. In addition, the composition, structure and topology of these materials was examined. It was possible to verify the presence of xylan in most fractions of this treated bagasse, although in variable quantities
|
19 |
Serine Hydrolase Selectivity : Kinetics and applications in organic and analytical chemistryHamberg, Anders January 2010 (has links)
The substrate selectivities for different serine hydrolases were utilized in various applications, presented in papers I-VI. The articles are discussed in the thesis in view of the kinetics of the enzyme catalysis involved. In paper I the enantioselectivities towards a range of secondary alcohols were reversed for Candida antarctica lipase B by site directed mutagenesis. The thermodynamic components of the enantioselectivity were determined for the mutated variant of the lipase. In papers II-III Candida antarctica lipase B was engineered for selective monoacylation using two different approaches. A variant of the lipase created for substrate assisted catalysis (paper II) and three different variants with mutations which decreased the volume of the active site (paper III) were evaluated. Enzyme kinetics for the different variants were measured and translated into activation energies for comparison of the approaches. In papers IV and V three different enzymes were used for rapid analysis of enantiomeric excess and conversion of O-acylated cyanohydrins synthesized by a defined protocol. Horse liver alcohol dehydrogenase, Candida antarctica lipase B and pig liver esterase were sequentially added to a solution containing the O-acylated cyanohydrin. Each enzyme caused a drop in absorbance from oxidation of NADH to NAD+. The product yield and enantiomeric excess was calculated from the relative differences in absorbance. In paper VI a method for C-terminal peptide sequencing was developed based on conventional Carboxypeptidase Y digestion combined with matrix assisted laser desorption/ionization mass spectrometry. An alternative nucleophile was used to obtain a stable peptide ladder and improve sequence coverage. / QC20100629
|
20 |
Lipase and ω-Transaminase : Biocatalytic InvestigationsSvedendahl, Maria January 2010 (has links)
In a lipase investigation, Candida antarctica lipase B (CALB) are explored for enzyme catalytic promiscuity. Enzyme catalytic promiscuity is shown by enzymes catalyzing alternative catalytic transformations proceeding via different transition state structures than normal. CALB normally performs hydrolysis reactions by activating and coordinating carboxylic acid/ester substrates in an oxyanion hole prior to nucleophilic attack from an active-site serine resulting in acyl enzyme formation. The idea of utilizing the carbonyl activation oxyanion hole in the active-site of CALB to catalyze promiscuous reactions arose by combining catalytic and structural knowledge about the enzyme with chemical imagination. We choose to explore conjugate addition and direct epoxidation activities in CALB by combining molecular modeling and kinetic experiments. By quantum-chemical calculations, the investigated promiscuous reactions were shown to proceed via ordered reaction mechanisms that differ from the native ping pong bi bi reaction mechanism. The investigated promiscuous activities were shown to take place in the enzyme active-site by various kinetic experiments, but despite this, no enantioselectivity was displayed. The reason for this is unknown, but can be a result of a too voluminous active-site or the lack of covalent coordination of the substrates during enzyme-catalysis (Paper I-IV). Combining enzyme structural knowledge with chemical imagination may provide numerous novel enzyme activities to be discovered. In an ω-transaminase investigation, two (S)-selective ω-transaminases from Arthrobacter citreus (Ac-ωTA) and Chromobacterium violaceum (Cv-ωTA) are explored aiming to improve their catalytic properties. Structural knowledge of these enzymes was provided by homology modeling. A homology structure of Ac-ωTA was successfully applied for rational design resulting in enzyme variants with improved enantioselectivity. Additionally, a single-point mutation reversed the enantiopreference of the enzyme from (S) to (R), which was further shown to be substrate dependent (Paper V). A homology structure of Cv-ωTA guided the creation of an enzyme variant showing reduced isopropyl amine inhibition. / QC20100609
|
Page generated in 0.1097 seconds