• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

EVALUATIONS ON ENZYMATIC EPOXIDATION, EFFICIENCY AND DECAY

Elena A Robles Molina (9751112) 14 December 2020 (has links)
<p>The potential use of enzymes in industrial synthesis of epoxidized soybean oil has been limited through the high cost of the enzyme catalyst, in this work we evaluate the effectiveness of chemo enzymatic epoxidation of high oleic soybean oil (HOSBO) using lipase B from <i>Candida antarctica </i>(CALB) on immobilization support Immobead 150 and H<sub>2</sub>O<sub>2 </sub>in a solvent-free system. Additionally, we evaluated the production decay rates for hydrolytic activity and epoxide product formation over consecutive batches to determine half-life of the enzyme catalyst. </p> <p> Batch epoxidation of HOSBO using CALB on 4wt% loading shows yields higher than 90% after 12 hrs. of reaction, and with a correlation to the consumption of double bonds suggesting that the reaction is selective and limiting side product reactions. Non-selective hydrolysis of oil was not found beyond the initial hydrolysis degree of raw HOSBO. Evaluations of decay given by epoxide product formation and released free fatty acids shows a half-life of the enzyme catalyst on these activities is of 22 ad 25 hrs. respectively. Finally, we evaluated the physical parameters influencing this decay, and found that H<sub>2</sub>O<sub>2</sub> presence is the most important parameter of enzyme inactivation with no significant effect from its slowed addition. We propose a new reactor configuration for the analysis of the specific steps on epoxide formation through peracid intermediates. </p>

Page generated in 0.0569 seconds