• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Epileptiform Activity Induced Alterations In Ca2+ Dynamics And Network Physiology Of Hippocampal Neurons - In Vitro Studies

Srinivas, V Kalyana 12 1900 (has links)
Epilepsy is characterized by the hyperexcitability of individual neurons and hyper synchronization of groups of neurons (networks). The acquired changes that take place at molecular, cellular and network levels are important for the induction and maintenance of epileptic activity in the brain. Epileptic activity is known to alter the intrinsic properties and signaling of neurons. Understanding acquired changes that cause epilepsy may lead to innovative strategies to prevent or cure this neurological disorder. Advances in in vitro electrophysiological techniques together with experimental models of epilepsy are indispensible tools to understand molecular, cellular and network mechanisms that underlie epileptiform activity. The aim of the study was to investigate the epileptiform activity induced alterations in Ca2+ dynamics in apical dendrites of hippocampal subicular pyramidal neurons in slices and changes in network properties of cultured hippocampal neurons. We have also made attempts to develop an in vitro model of epilepsy using organotypic hippocampal slice cultures. In the first part of the present study, investigations on the basic properties of dendritic Ca2+ signaling in subicular pyramidal neurons during epileptiform activity are described. Subiculum, a part of the hippocampal formation is present, adjacent to the CA1 subfield. It acts as a transition zone between the hippocampus and entorhinal cortex. It receives inputs directly from the CA1 region, the entorhinal cortex, subcortical and other cortical areas. Several forms of evidences support the role of subiculum in temporal lobe epilepsy. Pronounced neuronal loss has been reported in various regions of the hippocampal formation (CA1 and CA3) leaving the subiculum generally intact in human epileptic tissue. It has been observed that epileptic activity is generated in subiculum in cases where the CA3 and CA1 regions are damaged or even absent. However, it is not clear how subicular neurons protect themselves from epileptic activity induced neuronal death. It is widely accepted that epileptiform activity induced neuronal damage is a result of an abnormally large influx of Ca2+ into neuronal compartments. In the present study, combined hippocampus / entorhinal cortical brain slices were exposed to zero Mg2+ + 4-amino pyridine artificial cerebrospinal fluid (ACSF) to generate spontaneous epileptiform discharges. Whole cell current-clamp recordings combined with Ca2+ imaging experiments (by incorporating Oregon green BAPTA-1 in the recording pipette) were performed on subicular pyramidal neurons to understand the changes in [Ca2+]i transients elicited in apical dendrites, in response to spontaneous epileptic discharges. To understand the changes occurring with respect to control, experiments were performed (in both control and in vitro epileptic conditions) where [Ca2+]i transients in dendrites were elicited by back propagating action potentials following somatic current injections. The results show clear distance-dependent changes in decay kinetics of [Ca2+]i transients (τdecay), without change in the amplitude of the [Ca2+]i transients, in distal parts (95–110 µm) compared to proximal segments (30–45 µm) of apical dendrites of subicular pyramidal neurons under in vitro epileptic condition, but not in control conditions. Pharmacological agents that block Ca2+ transporters viz. Na+/Ca2+ exchangers (Benzamil), plasma membrane Ca2+-ATPase pumps (Calmidazolium) and smooth endoplasmic reticulum Ca2+-ATPase pumps (Thapsigargin) were applied locally to the proximal and distal part of the apical dendrites in both experimental conditions to understand the molecular aspects of the Ca2+ extrusion mechanisms. The relative contribution of Na+/Ca2+ exchangers in Ca2+ extrusion was higher in the distal apical dendrite in in vitro epileptic condition. Using computer simulations with NEURON, biophysically realistic models were built to understand how faster decay of [Ca2+]i transients in the distal part of apical dendrite associated with [Ca2+]i extrusion mechanisms affect excitability of the neurons. With a linear increase in the density of Na+/Ca2+ exchangers along the apical dendrite, the decrease in τ decay values of [Ca2+]i transients in distal regions seen in experimental epileptic condition was reproduced in simulation. This linear increase in Na+/Ca2+ exchangers lowered the threshold for firing in response to consecutive synaptic inputs to the distal apical dendrite. Our results thus, show the existence of a novel neuroprotective mechanism in distal parts of the apical dendrite of subicular pyramidal neurons under in vitro epileptic condition with the Na+/Ca2+ exchangers being the major contributors to this mechanism. Although the enhanced contribution of Na+/Ca2+ exchangers helps the neuron in removing excess [Ca2+]i loads, it paradoxically makes the neuron hyperexcitable to synaptic inputs in the distal parts of the apical dendrites. Thus, the Na+/Ca2+ exchangers may actually protect subicular pyramidal neurons and at the same time contribute to the maintenance of epileptiform activity. In the second part of the study, neuronal network topologies and connectivity patterns were explored in control and glutamate injury induced epileptogenic hippocampal neuronal networks, cultured on planar multielectrode array (8×8) probes. Hyper synchronization of neuronal networks is the hallmark of epilepsy. To understand hyper synchronization and connectivity patterns of neuronal networks, electrical activity from multiple neurons were monitored simultaneously. The electrical activity recorded from a single electrode mainly consisted of randomly fired single spikes and bursts of spikes. Simultaneous measurement of electrical activity from all the 64 electrodes revealed network bursts. A network burst represents the period (lasting for 0.1–0.2 s) of synchronized activity in the network and, during this transient period, maximum numbers of neurons interact with each other. The network bursts were observed in both control and in vitro epileptic networks, but the frequency of network bursts was more in the latter, compared to former condition. Time stamps of individual spikes (from all 64 electrodes) during such time-aligned network burst were collected and stored in a matrix and used to construct the network topology. Connectivity maps were obtained by analyzing the spike trains using cross-covariance analysis and graph theory methods. Analysis of degree distribution, which is a measure of direct connections between electrodes in a neuronal network, showed exponential and Gaussian distributions in control and in vitro epileptic networks, respectively. Quantification of number of direct connections per electrode revealed that the in vitro epileptic networks showed much higher number of direct connections per electrode compared to control networks. Our results suggest that functional two-dimensional neuronal networks in vitro are not scale-free (not a power law degree distribution). After brief exposure to glutamate, normal hippocampal neuronal networks became hyperexcitable and fired a larger number of network bursts with altered network topology. Quantification of clustering coefficient and path length in these two types of networks revealed that the small-world network property was lost once the networks become epileptic and this was accompanied by a change from an exponential to a Gaussian network. In the last part of the study, we have explored if an excitotoxic glutamate injury (20 µM for 10 min) that produces spontaneous, recurrent, epileptiform discharges in cultured hippocampal neurons can induce epileptogenesis in hippocampal neurons of organotypic brain slice cultures. In vitro models of epilepsy are necessary to understand the mechanisms underlying seizures, the changes in brain structure and function that underlie epilepsy and are the best methods for developing new antiseizure and antiepileptogenic strategies. Glutamate receptor over-activation has been strongly associated with epileptogenesis. Recent studies have shown that brief exposure of dissociated hippocampal neurons in culture to glutamate (20 µM for 10 min) induces epileptogenesis in surviving neurons. Our aim was to extend the in vitro model of glutamate injury induced epilepsy to the slice preparations with intact brain circuits. Patch clamp technique in current-clamp mode was employed to monitor the expression of spontaneous epileptiform discharges from CA1 and CA3 neurons using several combinations of glutamate injury protocols. The results presented here represent preliminary efforts to standardize the glutamate injury protocol for inducing epileptogenesis in organotypic slice preparations. Our results indicate that glutamate injury protocols that induced epileptogenesis in dissociated hippocampal neurons in culture failed to turn CA1 and CA3 neurons of organotypic brain slice cultures epileptic. We also found that the CA1 and CA3 neurons of organotypic brain slice cultures are resilient to induction of epileptogenesis by glutamate injury protocols with 10 times higher concentrations of glutamate (200µM) than that used for neuronal cultures and long exposure periods (upto 30 min). These results clearly show that the factors involved in induction of epileptiform activity after glutamate injury in neuronal cultures and those involved in making the neurons in organotypic slices resilient to such insults are different, and understanding them could give vital clues about epileptogenesis and its control. The resilience of CA1 and CA3 neurons seen could be due to differences in homeostatic plasticity that operate in both these experimental systems. However, further studies are required to corroborate this hypothesis.
2

GABAA Receptor Mediated Phasic and Tonic Inhibition in Subicular Pyramidal Neurons

Sah, Nirnath January 2013 (has links) (PDF)
GABA is the major inhibitory neurotransmitter in the central nervous system. It binds to two types of receptors –ionotropic GABAA and metabotropic GABAB. The GABAA receptor directly gates a Clionophore that causes hyperpolarization in mature excitatory neurons while GABAB receptor mediates a slower hyperpolarizing response via G-protein coupled receptor (GPCR) activated potassium channels. This signaling mechanism gets further complicated by the heterogeneous GABA receptor subunit composition that influences the response kinetics in the postsynaptic membrane. In this thesis, the focus has been to decipher the role of GABAA receptors in relation to cellular excitability in the subiculum under physiological and pathophysiological conditions. The subiculum, considered as the output structure of hippocampus, modulates information flow from hippocampus to various cortical and sub-cortical areas and has been implicated in learning and memory, rhythm generation and various neurological disorders. It gates hippocampal activity with its well orchestrated and fine tuned intrinsic and local network properties. Over the years many studies have shown the involvement of subiculum in temporal lobe epilepsy where it forms the focal point of epileptiform activities with altered cellular and network properties. The subiculum is characterized by the presence of a significant population of burst firing neurons that lead local epileptiform activity. By virtue of its bursting nature and recurrent connections, it is a potential site for seizure generation and maintenance. Epileptiform activities are dynamic in nature and change temporally and spatially according to the alterations in electrophysiological properties of neurons. Transitions to different electrical activities in neurons following a prolonged challenge with epileptogenic stimulus have been shown in other brain structures, but not in the subiculum. Considering the importance of the subicular burst firing neurons in the propagation of epileptiform activity to the entorhinal cortex, we have explored the phenomenon of electrophysiological phase transitions in the burst firing neurons of the subiculum in an in vitro brain slice model of epileptogenesis. Whole-cell patch clamp and extracellular field recordings revealed a distinct phenomenon in the subiculum wherein an early hyperexcitable phase was followed by a late suppressed phase upon continuous perfusion with epileptogenic 4-amino pyridine and magnesium-free medium. The late suppressed phase was characterized by inhibitory post-synaptic potentials (IPSPs) in pyramidal excitatory neurons and bursting activity in local fast spiking interneurons at a frequency of 0.1-0.8 Hz. The IPSPs were mediated by GABAA receptors that coincided with excitatory synaptic inputs to attenuate action potential discharge. These IPSPs ceased following a cut between the CA1 and subiculum. Our results suggest the importance of feedforward inhibition in the suppression of epileptiform activity in subiculum to mediate a homeostatic response towards the induced hyper-excitability. GABA release from presynaptic nerve endings activates postsynaptic GABAA receptors, which evoke faster phasic inhibitory postsynaptic currents (IPSCs) and non-inactivating inhibitory tonic current, mediated through extrasynaptic GABAA receptors. These receptors are heteropentameric GABA-gated channels assembled from 19 possible subunits (α1-6, β1-3, γ1-3, δ, π, ρ1-3, θ, and ε). The 2 major subunits involved in tonic GABAA currents in the hippocampus are α5 and δ subunits. Tonic GABAA receptor mediated inhibitory current plays an important role in neuronal physiology as well as pathophysiology such as mood disorders, insomnia, epilepsy, autism spectrum disorders and schizophrenia. While the alterations of various electrical properties due to tonic inhibition have been studied in neurons from different regions, its influence on intrinsic subthreshold resonance in pyramidal excitatory neurons having hyperpolarization-activated cyclic nucleotide-gated (HCN) channels is not known. In the present study, we show the involvement of α5βγ GABAA receptors in mediating picrotoxin sensitive tonic current in subicular pyramidal neurons using known pharmacological agents that target specific GABAA receptor subunits. We further investigated the contribution of tonic conductance in regulating subthreshold electrophysiological properties using current clamp and dynamic clamp experiments. Our experiments suggest that tonic GABAergic inhibition can actively modulate subthreshold properties of subicular pyramidal neurons including resonance due to HCNchannels that may potentially alter the response dynamics in an oscillating neuronal network.
3

Interaktion zwischen Sauerstoffspannung und epileptiformer Aktivität und deren Einfluss auf Zellschäden in juvenilen organotypischen hippokampalen Schnittkulturen der Ratte

Pomper, Jörn K. 25 January 2006 (has links)
In der Pathogenese der Temporallappenepilepsie wird kindlichen hippokampalen Schädigungen eine wesentliche Rolle zugeschrieben. Epileptische Krämpfe und perinatale Asphyxie sind zwei häufige Ursachen dieser Schädigungen. Anhaltende epileptiforme Aktivität im Niedrig-Mg2+-Modell als einer experimentellen Form epileptischer Krämpfe führt in organotypischen hippokampalen Schnittkulturen (OHSK) der Ratte, die als Ersatzsystem des kindlichen Hippokampus verwendet werden, zu Zellschäden. Während dieser Untersuchungen ergab sich der Verdacht auf eine zusätzlich schädigende Wirkung erhöhter Sauerstoffspannungen. In meiner ersten Versuchsreihe konnte ich nachweisen, dass erhöhte Sauerstoffspannungen (60 %, 95 %) verglichen mit 20%-Sauerstoffspannung zu reversiblen und irreversiblen Zellschäden in OHSK führen. Die Zellschäden wurden über Veränderungen reizinduzierter Feldpotentiale, d.h. Abnahme der Amplitude, Zunahme der Latenz und Zunahme des Doppelpulsindex, sowie über die Propidium Jodid (PJ)-Fluoreszenzintensität bestimmt. In der zweiten Versuchsreihe konnte gezeigt werden, dass erhöhte Sauerstoffspannungen auch nach einer Hypoxie im Sinne einer hyperoxischen Reoxygenierung verglichen mit normoxischer Reoxygenierung vermehrt Zellschäden in OHSK zur Folge haben. In der dritten Versuchsreihe konnte ich ausschließen, dass erhöhte Sauerstoffspannungen eine notwendige Bedingung für Zellschäden infolge anhaltender epileptiformer Aktivität sind. Um die zellschädigende Rolle von Spreading Depressions (SDs), die während epileptiformer Aktivität auftreten, zu bestimmen, wurde in der vierten Versuchsreihe eine Methode etabliert, SD-ähnliche Ereignisse isoliert und zuverlässig in normoxischen OHSK auszulösen. Auf diese Weise wiederholt ausgelöste SD-ähnliche Ereignisse führten zu Zellschäden, bestimmt über die Veränderung elektrophysiologischer Eigenschaften von SD-ähnlichen Ereignissen, Abnahme der Feldpotentialamplitude und PJ-Fluoreszenzintensität. / Hippocampal damage during infancy is thought to play an important role in the pathogenesis of temporal lobe epilepsy. Epileptic seizures and perinatal asphyxia are two frequent causes of these damages. Sustained epileptiform activity induced in the low Mg2+-model of epileptic seizures leads to cell damage in organotypic hippocampal slice cultures (OHSC) of the rat, which are used as a surrogate for the infantile hippocampus. During a previous study utilising this model the suspicion arose that increased oxygen tension could have an additional damaging effect. My first series of experiments proved that increased oxygen tension (60 %, 95 %) lead to reversible and irreversible cell damage in OHSC compared to 20%-oxygen tension. Cell damage was determined by alterations of evoked field potentials, i.e. decrement of amplitude, increment of latency and paired pulse index, as well as by propidium iodide fluorescence. The second series of experiments showed that increased oxygen tension applied after an hypoxic period (hyperoxic reoxygenation) result in augmented cell damage compared to normoxic reoxygenation. With the third series of experiments it could be excluded that increased oxygen tension is an essential condition for the occurrence of cell damage due to sustained epileptiform activity. In order to elucidate the damaging role of spreading depressions (SD), which emerge during epileptiform activity, a method was established in the fourth series of experiments that allowed the reliable induction of SD-like events in normoxic OHSC. Repetitive SD-like events induced by this method led to cell damage, assessed by alterations of electrophysiological characteristics of SD-like events, decrement of evoked field potential amplitude and propidium iodide fluorescence.

Page generated in 0.0582 seconds