• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 2
  • 1
  • Tagged with
  • 14
  • 14
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The role of Tm5NM1/2 on early neuritogenesis

Chan, Yee-Ka Agnes January 2009 (has links)
Master of Philosophy (Medicine) / The actin cytoskeleton is important in many cellular processes such as motility, and establishing and maintaining cell morphology. Members of the tropomyosin protein family associate with the actin cytoskeleton along the major groove of actin filaments (F-actin), stabilising them and regulating actin-filament dynamics. To date over 40 non-muscle tropomyosin isoforms have been identified, which are encoded by 4 different genes (α, β, γ, δ). Individual tropomyosin isoforms define functionally distinct F-actin populations. Previous studies have shown that tropomyosins sort to distinct subcellular compartments at different stages of development in polarised cells. Neuronal growth cones are highly dynamic polarised structures, dependent on a constant reorganisation of the actin cytoskeleton. By eliminating tropomyosins in a knockout (KO) mouse model, we investigated the role of two tropomyosin isoforms, Tm5NM1 and Tm5NM2 (γTm gene products) in growth cone dynamics and neurite outgrowth. Growth cone protrusion rates were significantly increased in one day old Tm5NM1/2 KO hippocampal neurons compared to WT controls. Neuritogenesis was significantly affected by the elimination of Tm5NM1/2, with a slight decrease in neurite length and an increase in neuronal branching in neurons cultured for four days. At the molecular level, the depletion of Tm5NM1/2 had no impact on the protein levels and activity of ADF/cofilin in hippocampal neurons while in cortical neurons a subtle but significant increase in ADF/cofilin activity was observed. The subtle phenotype in the early stages of neuritogenesis observed from eliminating Tm5NM1/2 may be explained with functional compensation by other tropomyosin isoforms. Functional compensation for the loss of Tm5NM1/2 may be provided by isoforms Tm5a/5b, TmBr2 and Tm4 as they localise to the growth cones, structures where Tm5NM1/2 are normally found. These results suggest that Tm5NM1/2 may not be required for early stages of neuritogenesis but may still play a fine-tuning role for this process.
2

The role of Tm5NM1/2 on early neuritogenesis

Chan, Yee-Ka Agnes January 2009 (has links)
Master of Philosophy (Medicine) / The actin cytoskeleton is important in many cellular processes such as motility, and establishing and maintaining cell morphology. Members of the tropomyosin protein family associate with the actin cytoskeleton along the major groove of actin filaments (F-actin), stabilising them and regulating actin-filament dynamics. To date over 40 non-muscle tropomyosin isoforms have been identified, which are encoded by 4 different genes (α, β, γ, δ). Individual tropomyosin isoforms define functionally distinct F-actin populations. Previous studies have shown that tropomyosins sort to distinct subcellular compartments at different stages of development in polarised cells. Neuronal growth cones are highly dynamic polarised structures, dependent on a constant reorganisation of the actin cytoskeleton. By eliminating tropomyosins in a knockout (KO) mouse model, we investigated the role of two tropomyosin isoforms, Tm5NM1 and Tm5NM2 (γTm gene products) in growth cone dynamics and neurite outgrowth. Growth cone protrusion rates were significantly increased in one day old Tm5NM1/2 KO hippocampal neurons compared to WT controls. Neuritogenesis was significantly affected by the elimination of Tm5NM1/2, with a slight decrease in neurite length and an increase in neuronal branching in neurons cultured for four days. At the molecular level, the depletion of Tm5NM1/2 had no impact on the protein levels and activity of ADF/cofilin in hippocampal neurons while in cortical neurons a subtle but significant increase in ADF/cofilin activity was observed. The subtle phenotype in the early stages of neuritogenesis observed from eliminating Tm5NM1/2 may be explained with functional compensation by other tropomyosin isoforms. Functional compensation for the loss of Tm5NM1/2 may be provided by isoforms Tm5a/5b, TmBr2 and Tm4 as they localise to the growth cones, structures where Tm5NM1/2 are normally found. These results suggest that Tm5NM1/2 may not be required for early stages of neuritogenesis but may still play a fine-tuning role for this process.
3

Molekulární mechanismy regulace transportu a funkce různých podtypů NMDA receptorů v hipokampálních neuronech / Molecular mechanisms of regulation of trafficking and function of different subtypes of NMDA receptors in hippocampal neurons

Skřenková, Kristýna January 2020 (has links)
of Ph.D. thesis Molecular mechanisms of regulation of trafficking and function of different subtypes of NMDA receptors in hippocampal neurons Mgr. Kristýna Skřenková N-methyl-D-aspartate (NMDA) receptors are ionotropic glutamate receptors that play a key role in the mammalian central nervous system. Under physiological conditions, these receptors are important for excitatory synaptic transmission and memory formation. However, under pathological conditions, their abnormal regulation or activation may lead to many neurological and psychiatric disorders, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, epilepsy or schizophrenia. Previous studies have shown that the number and type of NMDA receptors on the cell surface are regulated at multiple levels, including their synthesis, folding, internalization or degradation. During the trafficking of NMDA receptors to the cell surface membrane, both the agonist binding and receptor activation are examined. Moreover, NMDA receptors undergo many posttranslational modifications such as palmitoylation, phosphorylation or N-glycosylation. In this thesis, we studied the molecular mechanisms that may affect the trafficking and functional properties of NMDA receptors in mammalian cells and rat hippocampal neurons. Specifically, we studied i)...
4

Der Einfluß von Botulinumneurotoxin A auf Wachstum und Differenzierung primär dissoziierter hippocampaler Zellkulturen

Fetter, Ingmar 28 June 1999 (has links)
Obwohl die Struktur und das Ausmaß dendritischer Verzweigungen eine wichtige Rolle bei der Informationsübertragung neuronaler Zellen spielen, ist bislang wenig über die Bausteine und Molekularmechanismen des Dendritenwachstums bekannt. Unter der Verwendung primär dissoziierter hippocampaler Zellkulturen embryonaler Mäuse untersuchte ich frühe Stadien des Zellfortsatzwachstums. Dabei konnte ich SNAP-25 (synaptosomal associated protein of 25 kDA), ein Schlüsselprotein der regulierten Exozytose, nicht nur in Axonen und terminalen Axonendigungen, sondern auch anhand von Doppelimmunmarkierungen mit den dendritischen Markern Transferrin-Rezeptor und MAP-2 in Dendriten lokalisieren. Die spezifische Inaktivierung von SNAP-25 durch Botulinumneurotoxin A (BoNT/A) führte zur Hemmung des Axonwachstums und des Vesikelrecyclings in terminalen Axonendigungen. Darüberhinaus wurde auch das Wachstum dendritischer Fortsätze von Körner- und Pyramidenzellen durch BoNT/A signifikant gehemmt. Daraus läßt sich schließen, daß SNAP-25, im Gegensatz zu Synaptobrevin, an konstitutiven Prozessen in den Axonen und Dendriten hippocampaler Neurone beteiligt ist. / Structure and dimension of the dendritic arbor are important determinants of information processing by the nerve cell, but mechanisms and molecules involved in dendritic growth are essentially unknown. I investigated early mechanisms of dendritic growth using mouse fetal hippocampal neurons in primary culture, which form processes during the first week in vitro. I detected a key component of regulated exocytosis, SNAP-25 (synaptosomal associated protein of 25 kDa)., in axons and axonal terminals as well as in dendrites identified by the occurrence of the dendritic markers transferrin receptor and MAP2. Selective inactivation of SNAP-25 by botulinum neurotoxin A (BoNTA) resulted in inhibition of axonal growth and of vesicle recycling in axonal terminals. In addition, dendritic growth of hippocampal pyramidal and granule neurons was significantly inhibited by BoNTA. These observations indicate that SNAP-25, but not synaptobrevin, is involved in constitutive axonal growth and dendrite formation by hippocampal neurons.
5

Neuronal Correlations And Real-Time Implementation Of Spatio-Temporal Patterns Of Cultured Hippocampal Neural Networks in vitro

Kamal, Hassan 09 1900 (has links)
The study of cultured neuronal networks has opened up avenues for understanding the ion channels, receptor molecules, and synaptic plasticity that may form the basis of learning and memory. The hippocampal neurons prepared from Wistar rats and put in culture, show, after a few days, spontaneous activity with typical electrophysiological pattern ranging from stochastic spiking to synchronized bursting. Using a multi-electrode array (MEA) having 64 electrodes, the electrophysiological signals are acquired, and connectivity maps are constructed using correlation matrix to understand how the neurons in a network communicate during the burst. The response of the neuronal system to epilepsy caused by induced glutamate injury and subsequent exposure of the system to phenobarbital to form different connectivity networks is analyzed in this study. The correlation matrix of the neuronal network before and after administering glutamate as well as after administering phenobarbital is used to understand the neuronal and network level changes that take place in the system. In order to interface a neuronal network to a physical world, the major computations to be performed are noise removal, pattern recovery, pattern matching and clustering. These computations are to be performed in real time. The system should be able to identify a pattern and relate a physical task to the pattern in about 200-400 ms. Algorithms have been developed for the implementation of a real-time neuronal system on a multi-node digital processor system.
6

Intracellular Calcium Dynamics In Dendrites Of Hippocampal Neurons Rendered Epileptic And In Processes Of Astrocytes Following Glutamate Pretreatment

Padmashri, R 08 1900 (has links)
The fundamental attribute of neurons is their cellular electrical excitability, which is based on the expression of a plethora of ligand- and voltage-gated membrane channels that give rise to prominent membrane currents and membrane potential variations that represent the biophysical substrate underlying the transfer and integration of information at the cellular level. Dendrites have both an electrical and a biochemical character, which are closely linked. In contrast, glial cells are non-electrically excitable but nevertheless display a form of excitability that is based on variations of the Ca2+ concentration in the cytosol rather than electrical changes in the membrane. Cytoplasmic Ca2+ serves as an intracellular signal that is responsible for controlling a multitude of cellular processes. The key to this pleiotropic role is the complex spatiotemporal organization of the [Ca2+]i rise evoked by extracellular agonists, which allows selected effectors to be recruited and specific actions to be initiated. Ca2+ handling in the cell is maintained by operation of multiple mechanisms of Ca2+ influx, internal release, diffusion, buffering and extrusion. Ca2+ tends to be a rather parochial operator with a small radius of action from its point of entry at the cytoplasm resulting in the concept of microdomains. Dendritic Ca2+ signaling have been shown to be highly compartmentalized and astrocytic processes have been reported to be constituted by hundreds of microdomains that represent the elementary units of the astrocyte Ca2+ signal, from where it can eventually propagate to other regions of the cell. The astrocyte Ca2+ elevation may thus act as intra and intercellular signal that can propagate within and between astrocytes, signaling to different regions of the cell and to different cells. The spatio-temporal features of neuron-to-astrocyte communication, results from diverse neurotransmitters and signaling pathways that converge and cooperate to shape the Ca2+ signal in astrocytes. Alterations in Ca2+ homeostasis have been shown to be associated with major pathological conditions of the brain such as epilepsy, ischemia and neurodegenerative diseases. Although there are evidences of Ca2+ rise in hippocampal neurons in in vitro models of epilepsy (Pal et al., 1999; Limbrick et al., 2001), there is no information on the Ca2+ regulatory mechanisms operating in discrete compartments of the epileptic neuron following Ca2+ influx through voltage gated calcium channels (VGCCs). In the first part of the work, the spatial and temporal profiles of depolarization induced changes in the intracellular Ca2+ concentration in the dendrites of cultured autaptic hippocampal pyramidal neurons rendered epileptic experimentally have been addressed. Our in vitro epilepsy model consisted of hippocampal neurons in autaptic culture that were grown in the presence of kynurenate and high Mg2+, and subsequently washing the preparation free of the blockers. To understand the differences in Ca2+ handling mechanisms in different compartments of a control neuron and the kynurenate treated neuron, a combination of whole-cell patch-clamp recording and fast Ca2+ imaging methods using the Ca2+ indicator Oregon Green 488 BAPTA-1 was applied. All our analysis was focused on localized regions in the dendrite that showed pronounced Ca2+ transients upon activation of high voltage activated (HVA) Ca2+ channels. The spatial extent of Ca2+ signals suggested the presence of distinct dendritic compartments that respond to the depolarizing stimulus. Further, the local Ca2+ transients were observed even in the presence of NMDA and AMPA receptor antagonists, suggesting that the opening of VGCCs primarily triggered the local Ca2+ changes. The prominent changes in intracellular Ca2+ observed in these dendritic regions appear to be sites where Ca2+ evoked dendritic exocytosis (CEDE) takes place. Since cellular Ca2+ buffers determine the amplitude and diffusional spread of neuronal Ca2+ signals, quantitative estimates of the time-dependent spread of intracellular Ca2+ in the dendritic compartments in the control and treated neurons were done using image processing techniques. Physiological changes in Ca2+ channel functioning were also induced by kynurenate treatment and one such noticeable difference was the observation of Ca2+ dependent inactivation in the treated neurons. We provide evidences of localized Ca2+ changes in the dendrites of hippocampal neurons that are rendered epileptic by kynurenate treatment, suggesting that these sites are more vulnerable (Padmashri et al., 2006). This might contribute to the epileptiform activity by local changes in cellular and membrane properties in complex ways that remains to be clearly understood. Status Epilepticus (SE), stroke and traumatic brain injury are all associated with large increases in extracellular glutamate concentrations. The concentration of glutamate in the extracellular fluid is around 3-4 µM and astrocytes are primarily responsible for the uptake of glutamate at the synapses. The extracellular levels of glutamate has been shown to increase dramatically (16 fold) in human SE suggesting an important role of glutamate in the mechanism of seizure activity and seizure related brain damage (Carlson et al., 1992). Several other studies have also shown a persistent increase in extracellular glutamate concentration to potentially neurotoxic concentrations in the epileptogenic hippocampus (During and Spencer, 1993; Sherwin, 1999; Cavus et al., 2005). We addressed the problem related to the effects of prolonged glutamate pretreatment on Ca2+ signaling in an individual astrocyte and its adjoining astrocyte (astrocyte pair), rather than on a syncytium of astrocytes in culture. Individual astrocytes may have functional domains that respond to an agonist through distinct receptor signaling systems. These are difficult to observe in studies that are done on glial syncytium because of spatial limits of image capture. This was examined with simultaneous somatic patch-pipette recording of a single astrocyte to evoke voltage-gated calcium currents, and Ca2+ imaging using the Ca2+ indicator Oregon Green 488 BAPTA-1 to identify the Ca2+ microdomains. Transient Ca2+ changes locked to the depolarization were observed in certain compartments in the astrocyte processes of the depolarized astrocyte and the responses were more pronounced in the adjoining astrocyte of the astrocyte pair. The Ca2+ transient amplitudes were enhanced on pretreatment of cells with glutamate (500 µM for 20 minutes). Estimation of local Ca2+ diffusion coefficients in the astrocytic processes indicated higher values in the adjoining astrocyte of the glutamate pretreated group. In order to understand the underlying mechanisms, we performed the experiments in the presence of different blockers for the metabotropic glutamate receptor, inositol 1,4,5 triphosphate (IP3) receptors and gap junctions. Ca2+ transients recorded on pretreatment of cells with glutamate showed attenuated responses in the presence of the metabotropic glutamate receptor (mGluR) antagonist α-Methyl(4-Carboxy-Phenyl) Glycine (MCPG). Intracellular heparin (an antagonist of IP3 receptor) introduced in the depolarized astrocyte did not affect the Ca2+ transients in the heparin loaded astrocyte, but attenuated the [Ca2+]i responses in the adjoining astrocyte suggesting that IP3 may be the transfer signal. The uncoupling agent 1-Octanol attenuated the [Ca2+]i responses in the adjoining cell of the astrocyte pair in both the control and glutamate pretreated astrocytes indicating the role of gap junctional communication. The findings of [Ca2+]i responses within discrete regions of astrocytic processes suggest that astrocytes may be comprised of microdomains whose properties are altered by glutamate pretreatment. The data also indicates that glutamate induced alterations in Ca2+ signaling in the astrocyte pair may be mediated through phospholipase C (PLC), IP3, internal Ca2+ stores, VGCCs and gap junction channels (Padmashri and Sikdar, 2006). Neuronal (EAAC-1) and glial (GLT-1 and GLAST) glutamate transporters facilitate glutamate reuptake after synaptic release. Transgenic mice with GLT-1 knockout display spontaneous epileptic activity (Tanaka et al., 1997) and loss of glial glutamate transporters using chronic antisense nucleotide administration was reported to result in elevated extracellular glutamate levels and neurodegeneration characteristic of excitotoxity (Rothstein et al., 1996). Dysfunction of glutamate transporters and the resulting increase of glutamate have been speculated to play an important role in infantile epilepsies (Demarque et al., 2004). We examined the effects of pretreatment with glutamate in the presence of the glutamate transport inhibitor threo-β-hydroxy-aspartate (TBHA) and in Na+-free extracellular medium to understand whether this resulted in any alteration in the astrocytic intracellular Ca2+ dynamics following activation of voltage gated calcium channels. The Ca2+ responses were found to be attenuated in both the cases indicating that the elevated levels of extracellular glutamate due to blockade of glutamate transporters may influence the responses mediated by the astrocytic glutamate receptors. Our studies indicate that the heightened extracellular glutamate concentration is not gliotoxic in our experimental system, although it may have a profound effect on altering the activity of surrounding neurons which was not addressed in the present work. Several studies have indicated that neurons control the level of gap junction mediated communication between astrocytes (Giaume and McCarthy, 1996; Rouach et al, 2000). All our earlier studies were done on process bearing astrocytes that were co-cultured with neurons. We have addressed the question as to whether the spatio-temporal changes in [Ca2+]i in astrocyte pairs differ if the astrocytes are cultured in the absence of neurons. The results indicate that there is indeed a significant reduction in the responses that are evoked in response to the depolarization pulse in the adjoining cell of the astrocyte pair. These experiments demonstrate that neurons in the cocultures may selectively enhance the Ca2+ responses possibly by increasing the coupling between the two cells.
7

Epileptiform Activity Induced Alterations In Ca2+ Dynamics And Network Physiology Of Hippocampal Neurons - In Vitro Studies

Srinivas, V Kalyana 12 1900 (has links)
Epilepsy is characterized by the hyperexcitability of individual neurons and hyper synchronization of groups of neurons (networks). The acquired changes that take place at molecular, cellular and network levels are important for the induction and maintenance of epileptic activity in the brain. Epileptic activity is known to alter the intrinsic properties and signaling of neurons. Understanding acquired changes that cause epilepsy may lead to innovative strategies to prevent or cure this neurological disorder. Advances in in vitro electrophysiological techniques together with experimental models of epilepsy are indispensible tools to understand molecular, cellular and network mechanisms that underlie epileptiform activity. The aim of the study was to investigate the epileptiform activity induced alterations in Ca2+ dynamics in apical dendrites of hippocampal subicular pyramidal neurons in slices and changes in network properties of cultured hippocampal neurons. We have also made attempts to develop an in vitro model of epilepsy using organotypic hippocampal slice cultures. In the first part of the present study, investigations on the basic properties of dendritic Ca2+ signaling in subicular pyramidal neurons during epileptiform activity are described. Subiculum, a part of the hippocampal formation is present, adjacent to the CA1 subfield. It acts as a transition zone between the hippocampus and entorhinal cortex. It receives inputs directly from the CA1 region, the entorhinal cortex, subcortical and other cortical areas. Several forms of evidences support the role of subiculum in temporal lobe epilepsy. Pronounced neuronal loss has been reported in various regions of the hippocampal formation (CA1 and CA3) leaving the subiculum generally intact in human epileptic tissue. It has been observed that epileptic activity is generated in subiculum in cases where the CA3 and CA1 regions are damaged or even absent. However, it is not clear how subicular neurons protect themselves from epileptic activity induced neuronal death. It is widely accepted that epileptiform activity induced neuronal damage is a result of an abnormally large influx of Ca2+ into neuronal compartments. In the present study, combined hippocampus / entorhinal cortical brain slices were exposed to zero Mg2+ + 4-amino pyridine artificial cerebrospinal fluid (ACSF) to generate spontaneous epileptiform discharges. Whole cell current-clamp recordings combined with Ca2+ imaging experiments (by incorporating Oregon green BAPTA-1 in the recording pipette) were performed on subicular pyramidal neurons to understand the changes in [Ca2+]i transients elicited in apical dendrites, in response to spontaneous epileptic discharges. To understand the changes occurring with respect to control, experiments were performed (in both control and in vitro epileptic conditions) where [Ca2+]i transients in dendrites were elicited by back propagating action potentials following somatic current injections. The results show clear distance-dependent changes in decay kinetics of [Ca2+]i transients (τdecay), without change in the amplitude of the [Ca2+]i transients, in distal parts (95–110 µm) compared to proximal segments (30–45 µm) of apical dendrites of subicular pyramidal neurons under in vitro epileptic condition, but not in control conditions. Pharmacological agents that block Ca2+ transporters viz. Na+/Ca2+ exchangers (Benzamil), plasma membrane Ca2+-ATPase pumps (Calmidazolium) and smooth endoplasmic reticulum Ca2+-ATPase pumps (Thapsigargin) were applied locally to the proximal and distal part of the apical dendrites in both experimental conditions to understand the molecular aspects of the Ca2+ extrusion mechanisms. The relative contribution of Na+/Ca2+ exchangers in Ca2+ extrusion was higher in the distal apical dendrite in in vitro epileptic condition. Using computer simulations with NEURON, biophysically realistic models were built to understand how faster decay of [Ca2+]i transients in the distal part of apical dendrite associated with [Ca2+]i extrusion mechanisms affect excitability of the neurons. With a linear increase in the density of Na+/Ca2+ exchangers along the apical dendrite, the decrease in τ decay values of [Ca2+]i transients in distal regions seen in experimental epileptic condition was reproduced in simulation. This linear increase in Na+/Ca2+ exchangers lowered the threshold for firing in response to consecutive synaptic inputs to the distal apical dendrite. Our results thus, show the existence of a novel neuroprotective mechanism in distal parts of the apical dendrite of subicular pyramidal neurons under in vitro epileptic condition with the Na+/Ca2+ exchangers being the major contributors to this mechanism. Although the enhanced contribution of Na+/Ca2+ exchangers helps the neuron in removing excess [Ca2+]i loads, it paradoxically makes the neuron hyperexcitable to synaptic inputs in the distal parts of the apical dendrites. Thus, the Na+/Ca2+ exchangers may actually protect subicular pyramidal neurons and at the same time contribute to the maintenance of epileptiform activity. In the second part of the study, neuronal network topologies and connectivity patterns were explored in control and glutamate injury induced epileptogenic hippocampal neuronal networks, cultured on planar multielectrode array (8×8) probes. Hyper synchronization of neuronal networks is the hallmark of epilepsy. To understand hyper synchronization and connectivity patterns of neuronal networks, electrical activity from multiple neurons were monitored simultaneously. The electrical activity recorded from a single electrode mainly consisted of randomly fired single spikes and bursts of spikes. Simultaneous measurement of electrical activity from all the 64 electrodes revealed network bursts. A network burst represents the period (lasting for 0.1–0.2 s) of synchronized activity in the network and, during this transient period, maximum numbers of neurons interact with each other. The network bursts were observed in both control and in vitro epileptic networks, but the frequency of network bursts was more in the latter, compared to former condition. Time stamps of individual spikes (from all 64 electrodes) during such time-aligned network burst were collected and stored in a matrix and used to construct the network topology. Connectivity maps were obtained by analyzing the spike trains using cross-covariance analysis and graph theory methods. Analysis of degree distribution, which is a measure of direct connections between electrodes in a neuronal network, showed exponential and Gaussian distributions in control and in vitro epileptic networks, respectively. Quantification of number of direct connections per electrode revealed that the in vitro epileptic networks showed much higher number of direct connections per electrode compared to control networks. Our results suggest that functional two-dimensional neuronal networks in vitro are not scale-free (not a power law degree distribution). After brief exposure to glutamate, normal hippocampal neuronal networks became hyperexcitable and fired a larger number of network bursts with altered network topology. Quantification of clustering coefficient and path length in these two types of networks revealed that the small-world network property was lost once the networks become epileptic and this was accompanied by a change from an exponential to a Gaussian network. In the last part of the study, we have explored if an excitotoxic glutamate injury (20 µM for 10 min) that produces spontaneous, recurrent, epileptiform discharges in cultured hippocampal neurons can induce epileptogenesis in hippocampal neurons of organotypic brain slice cultures. In vitro models of epilepsy are necessary to understand the mechanisms underlying seizures, the changes in brain structure and function that underlie epilepsy and are the best methods for developing new antiseizure and antiepileptogenic strategies. Glutamate receptor over-activation has been strongly associated with epileptogenesis. Recent studies have shown that brief exposure of dissociated hippocampal neurons in culture to glutamate (20 µM for 10 min) induces epileptogenesis in surviving neurons. Our aim was to extend the in vitro model of glutamate injury induced epilepsy to the slice preparations with intact brain circuits. Patch clamp technique in current-clamp mode was employed to monitor the expression of spontaneous epileptiform discharges from CA1 and CA3 neurons using several combinations of glutamate injury protocols. The results presented here represent preliminary efforts to standardize the glutamate injury protocol for inducing epileptogenesis in organotypic slice preparations. Our results indicate that glutamate injury protocols that induced epileptogenesis in dissociated hippocampal neurons in culture failed to turn CA1 and CA3 neurons of organotypic brain slice cultures epileptic. We also found that the CA1 and CA3 neurons of organotypic brain slice cultures are resilient to induction of epileptogenesis by glutamate injury protocols with 10 times higher concentrations of glutamate (200µM) than that used for neuronal cultures and long exposure periods (upto 30 min). These results clearly show that the factors involved in induction of epileptiform activity after glutamate injury in neuronal cultures and those involved in making the neurons in organotypic slices resilient to such insults are different, and understanding them could give vital clues about epileptogenesis and its control. The resilience of CA1 and CA3 neurons seen could be due to differences in homeostatic plasticity that operate in both these experimental systems. However, further studies are required to corroborate this hypothesis.
8

Spektrale Eigenschaften des intrinsischen optischen Signals während hypoxieinduzierter Spreading Depression im Hippokampus der Ratte / Spectrally resolved recordings of the intrinsic optical signal in rat hippocampal slices during severe hypoxia

Mané, Maria 08 June 2011 (has links)
No description available.
9

Emergence and Homeostasis of Functional Maps in Hippocampal Neurons

Rathour, Rahul Kumar January 2014 (has links) (PDF)
Systematic investigations through several experimental techniques have revealed that hippocampal pyramidal neurons express voltage gated ion channels (VGICs) with well-defined gradients along their dendritic arbor. These actively maintained gradients in various dendritic VGICs effectuate several stereotypic, topographically continuous functional gradients along the topograph of the dendritic arbor, and have been referred to as intraneuronal functional maps. The prime goal of my thesis was to understand the emergence and homeostasis of the several coexistent functional maps that express within hippocampal pyramidal neurons. In the first part of the thesis, we focus only on spatial interactions between ion channels and analyzed the role of such interactions in the emergence of functional maps. We developed a generalized quantitative framework, the influence field, to analyze the extent of influence of a spatially localized VGIC cluster. Employing this framework, we showed that a localized VGIC cluster could have spatially widespread influence, and was heavily reliant on the specific physiological property and background conductances. Using the influence field model, we reconstructed functional gradients from VGIC conductance gradients, and demonstrated that the cumulative contribution of VGIC conductances in adjacent compartments plays a critical role in determining physiological properties at a given location. These results suggested that spatial interactions among spatially segregated VGIC clusters are necessary for the emergence of the functional maps. In the second part of the thesis, we assessed the specific roles of only kinetic interactions between ion channels in determining physiological properties by employing a single-compartmental model. In doing this, we analyzed the roles of interactions among several VGICs in regulating intrinsic response dynamics. Using global sensitivity analysis, we showed that functionally similar models could be achieved even when underlying parameters displayed tremendous variability and exhibited weak pair-wise correlations. These results suggested that that response homeostasis could be achieved through several non-unique channel combinations, as an emergent consequence of kinetic interactions among these channel conductances. In the final part of the thesis, we analyzed the combined impact of both spatial and kinetic interactions among ion channel conductances on the emergence and homeostasis of functional maps in a neuronal model endowed with extensive dendritic arborization. To do this, we performed global sensitivity analysis on morphologically realistic conductance-based models of hippocampal pyramidal neurons that coexpressed six functional maps. We found topographically continuous functional maps to emerge from disparate model parameters with weak pair-wise correlations between parameters. These results implied that individual channel properties need not be set at constant values in achieving overall homeostasis of several coexistent functional maps. We suggest collective channelostasis, where several channels regulate their properties and expression profiles in an uncorrelated manner, as an alternative for accomplishing functional map homeostasis. Finally, we developed a methodology to assess the contribution of individual channel conductances to the various functional measurements employing virtual knockout simulations. We found that the deletion of individual channels resulted in variable, measurement-and location-specific impacts across the model population.
10

Lithium Exposure Induced Changes At Glutamatergic Synapses In Hippocampal Neurons- Insights From In Vitro Electrophysiology And Imaging Studies

Ankolekar, Shreya Maruti 05 1900 (has links) (PDF)
Lithium is a drug used to treat mood disorders and also has many side effects, including central nervous system (CNS) complications (such as cognitive dulling), associated with its use. The mechanism of its action still remains unknown. Over the years, many leads have started emerging. It has been shown to inhibit several enzymes in the cell and has been implicated in altering many neurotransmitter systems and signal transduction pathways (serotonin, dopamine and norepinephrine neurotransmissions). Effect of exposure to therapeutic levels of lithium on mature glutamatergic synapses is being studied and several changes in glutamate receptor subtypes have already been reported. Effects of lithium on developing glutamatergic synapses have not been studied. The thesis tries to document and understand the changes brought about by long term lithium treatment on developing glutamatergic synapses in vitro in hippocampal neuronal cultures. In the present work, patch clamp technique was used to monitor the changes in the postsynapse and fluorescence imaging to study the presynaptic changes. The hippocampal neuronal cultures were treated with 1 mM lithium for 6 days during the synaptogenesis stage (DIV 4-10) and termed as chronic Li treatment (CLi). Following CLi treatment the changes occurring in amplitude and rectification property of the AMPA receptor (AMPAR), a subtype of glutamate ionotropic receptor, mediated miniature excitatory postsynaptic currents (mEPSCs) have been reported (Chapter III). Lithium inhibits protein kinase A (PKA), glycogen synthase kinase–3β (GSK-3β) and glutamate reuptake. Effect of inhibiting PKA, GSK-3β and glutamate reuptake was also studied with a view to understand the molecular basis of lithium action on AMPAR mEPSCs (Chapter IV). It was found that chronic lithium treatment (CLi) caused a reduction in the mean amplitude of mEPSCs mediated by AMPARs and also changed the rectification property of these receptors from being more outwardly rectifying to being more inwardly rectifying, an indication probably of increase in contribution of Ca2+-permeable AMPARs to the synaptic events. AMPAR events in chronic lithium treated cultures were more sensitive to both N-acetyl spermine (NASPM) application and di-fluoro-methyl-ornithine (DFMO) treatment, both specific to Ca2+-permeable AMPARs, indicating that there was an increase in the contribution from Ca2+-permeable AMPARs to the synaptic events. PKA inhibition with H-89 treatment (starting from DIV 4 (for 6 days)) reduced the mean amplitude of AMPAR mEPSCs and increased the mean rectification index (RI). GSK-3β inhibition with SB415286 (starting from DIV 4 (for 6 days)) did not alter the mean mEPSC amplitude but reduced the mean RI. Transient (24 hrs) glutamate reuptake inhibition with threo-β-Hydroxy-Aspartic-Acid (THA) at DIV 4 followed by a period of recovery led to smaller amplitudes but no change in RI. The 24 hr glutamate reuptake block on DIV 4 had long term effects. It led to an increase in AMPAR mEPSC frequency while AMPAR mEPSC amplitudes were reduced. The mean RI decrease seen when glutamate reuptake was blocked for 24 hrs on DIV 10, was absent in DIV 4 THA treated neurons. However, when the neuronal cultures were maintained in the presence of PKA and GSK-3β inhibitors, the DIV 4 THA treated neurons showed AMPAR mEPSC characteristics similar to CLi neurons. Thus, it was seen that individual inhibition of PKA, GSK-3β and glutamate reuptake did not lead to changes in AMPAR mEPSCs similar to that seen in lithium treated neurons. The effect of lithium exposure during synapse development on AMPARs could be reproduced closely by co-inhibiting PKA, GSK-3β and glutamate reuptake. Using the styryl dye FM1-43, the changes induced in presynaptic release by a similar chronic lithium treatment was studied (Chapter V). It was found that lithium exposure (1 mM, DIV 4-10) brought down the extent of dye loading, destaining and also slowed down the rate of dye loss in response to high KCl stimulation (the τfast component of destaining was significantly slower). Minimum loading experiments did not reveal any difference in mode of exocytosis (kiss and run/full-collapse) in control and lithium treated cultures. Chlorpromazine treatment (that inhibits clathrin-mediated endocytosis) affected dye loading to a lesser extent in lithium treated cultures as compared to control. Surprisingly, exposure to hyperosmotic solution 10 minutes after dye wash out boosted the extent of dye loading and destaining in lithium treated cultures (a phenomenon not seen in control). This could happen if the FM1-43 is trapped away from the wash solution during the wash period. This would be possible if endocytosis in CLi takes place, differently from control, through a process involving membrane infoldings similar to bulk endocytosis albeit a slower/compromised one. Taken together, the data presented here indicates that lithium treatment during synaptogenesis affects vesicular recycling mostly at the endocytosis and docking/priming steps (mobilization of vesicles for release). Lithium treated cultures also did not show the high KCl associated presynaptic potentiation observed in control which is a significant finding. In conclusion, chronic lithium treatment affected both the presynaptic and postsynaptic compartments of the glutamatergic synapse. The effect of lithium on AMPAR mEPSC could not be reproduced by individual inhibitions of biochemical effectors but by multiple inhibitions. Thus, the study done here underscores the need to look at the manifold effect of lithium in an integrated way. The study also might have implications in understanding the CNS complications seen in patients taking lithium treatment and in babies perinatally exposed to lithium.

Page generated in 0.055 seconds