• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 12
  • 12
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Group III-Nitride Epi And Nanostructures On Si(111) By Molecular Beam Epitaxy

Mahesh Kumar, * 12 1900 (has links) (PDF)
The present work has been focused on the growth of Group III-nitride epitaxial layers and nanostructures on Si (111) substrates by plasma-assisted molecular beam epitaxy. Silicon is regarded as a promising substrate for III-nitrides, since it is available in large quantity, at low cost and compatible to microelectronics device processing. However, three-dimensional island growth is unavoidable for the direct growth of GaN on Si (111) because of the extreme lattice and thermal expansion coefficient mismatch. To overcome these difficulties, by introducing β-Si3N4 buffer layer, the yellow luminescence free GaN can be grow on Si (111) substrate. The overall research work carried out in the present study comprises of five main parts. In the first part, high quality, crack free and smooth surface of GaN and InN epilayers were grown on Si(111) substrate using the substrate nitridation process. Crystalline quality and surface roughness of the GaN and InN layers are extremely sensitive to nitridation conditions such as nitridation temperature and time. Raman and PL studies indicate that the GaN film obtained by the nitridation sequences has less tensile stress and optically good. The optical band gaps of InN are obtained between ~0.73 to 0.78 eV and the blueshift of absorption edge can be induced by background electron concentration. The higher electron concentration brings in the larger blueshift, due to a possible Burstein–Moss effect. InN epilayers were also grown on GaN/Si(111) substrate by varying the growth parameters such as indium flux, substrate temperature and RF power. In the second part, InGaN/Si, GaN/Si3N4/n-Si and InN/Si3N4/n-Si heterostructures were fabricated and temperature dependent electrical transport behaviors were studied. Current density-voltage plots (J-V-T) of InGaN/Si heterostructure revealed that the ideality factor and Schottky barrier height are temperature dependent and the incorrect values of the Richardson’s constant produced, suggests an inhomogeneous barrier at the heterostructure interface. The higher value of the ideality factor compared to the ideal value and its temperature dependence suggest that the current transport is primarily dominated by thermionic field emission rather than thermionic emission. The valence band offset of GaN/β-Si3N4/Si and InGaN/Si heterojunctions were determined by X-ray photoemission spectroscopy. InN QDs on Si(111) substrate by droplet epitaxy and S-K growth method were grown in the third part. Single-crystalline structure of InN QDs (droplet epitaxy) was verified by TEM and the chemical bonding configurations of InN QDs were examined by XPS. The interdigitated electrode pattern was created and (I-V) characteristics of InN QDs were studied in a metal–semiconductor–metal configuration in the temperature range of 80–300 K. The I-V characteristics of lateral grown InN QDs were explained by using the trap model. A systematic manipulation of the morphology, optical emission and structural properties of InN/Si (111) QDs (S-K method) is demonstrated by changing the growth kinetics parameters such as flux rate and growth time. The growth kinetics of the QDs has been studied through the scaling method and observed that the distribution of dot sizes, for samples grown under varying conditions, has followed the scaling function. In the fourth part, InN nanorods (NRs) were grown on Si(111) and current transport properties of NRs/Si heterojunctions were studied. The rapid rise and decay of infrared on/off characteristics of InN NRs/Si heterojunction indicate that the device is highly sensitive to the IR light. Self-aligned GaN nanodots were grown on semi-insulating Si(111) substrate. The interdigitated electrode pattern was created on nanodots using photolithography and dark as well as UV photocurrent were studied. Surface band gaps of InN QDs were estimated from scanning tunneling spectroscopy (STS) I-V curves in the last part. It is found that band gap is strongly dependent on the size of InN QDs. The observed size-dependent STS band gap energy blueshifts as the QD’s diameter or height was reduced.
12

Dissimilar Hetero-Interfaces with Group III-A Nitrides : Material And Device Perspectives

Chandrasekar, Hareesh January 2016 (has links) (PDF)
Group III-A nitrides (GaN, AlN, InN and alloys) are materials of considerable contemporary interest and currently enable a wide variety of optoelectronic and high-power, high-frequency electronic applications. All of these applications utilize device structures that employ a single or multiple hetero-junctions, with material compositions varying across the interface. For example, the workhorse of GaN based electronic devices is the high electron mobility transistor (HEMT) which is usually composed of an AlGaN/GaN hetero-junction, where a two-dimensional electron gas (2DEG) is formed due to differences in polarization between the two layers. In addition to such hetero-junctions in the same material family, formation of hetero-interfaces in nitrides begins right from the epitaxy of the very first layer due to the lack of native substrates for their growth. The consequences of such "dissimilar" hetero-junctions typically manifest as large defect densities at this interface which in turn gives rise to defective films. Additionally, if the substrate is also a semiconductor, the electrical properties at such dissimilar semiconductor-nitride hetero-junctions are particularly important in terms of their influence on the performance of nitride devices. Nevertheless, the large defect densities at such dissimilar 3D-3D semiconductor interfaces, which translate into more trap states, also prevents them from being used as active device layers to say nothing of reliability considerations arising because of these defects. Recently, the advent of 2D materials such as graphene and MoS2 has opened up avenues for Van der Waal’s epitaxy of these layered films with practically any other material. Such defect-free integration enables dissimilar semiconductor hetero-junctions to be used as active device layers with carrier transport across the 2D-3D hetero-interface. This thesis deals with hetero-epitaxial growth platforms for reducing defect densities, and the material and electrical properties of dissimilar hetero-junctions with the group III-A nitride material system.

Page generated in 0.0511 seconds