• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 451
  • 55
  • 49
  • 21
  • 21
  • 18
  • 13
  • 7
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 748
  • 360
  • 358
  • 130
  • 118
  • 113
  • 112
  • 110
  • 102
  • 100
  • 98
  • 95
  • 93
  • 79
  • 75
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Study of the early stages of growth and epitaxy of GaN thin films on sapphire

Trifan, Eugen Mihai 12 December 2003 (has links)
No description available.
252

A Close-Space Sublimation Driven Pathway for the Manipulation of Substrate-Supported Micro- and Nanostructures

Sundar, Aarthi January 2014 (has links)
The ability to fabricate structures and engineer materials on the nanoscale leads to the development of new devices and the study of exciting phenomena. Nanostructures attached to the surface of a substrate, in a manner that renders them immobile, have numerous potential applications in a diverse number of areas. Substrate-supported nanostructures can be fabricated using numerous modalities; however the easiest and most inexpensive technique to create a large area of randomly distributed particles is by the technique of thermal dewetting. In this process a metastable thin film is deposited at room temperature and heated, causing the film to lower its surface energy by agglomerating into droplet-like nanostructures. The main drawbacks of nanostructure fabrication via this technique are the substantial size distributions realized and the lack of control over nanostructure placement. In this doctoral dissertation, a new pathway for imposing order onto the thermal dewetting process and for manipulating the size, placement, shape and composition of preformed templates is described. It sees the confinement of substrate-supported thin films or nanostructure templates by the free surface of a metal film or a second substrate surface. Confining the templates in this manner and heating them to elevated temperatures leads to changes in the characteristics of the nanostructures formed. Three different modalities are demonstrated which alters the preformed structures by: (i) subtracting atoms from the templates, (ii) adding atoms to the template or (iii) simultaneously adding and subtracting atoms. The ability to carry out such processes depends on the choice of the confining surface and the nanostructured templates used. A subtractive process occurs when an electroformed nickel mesh is placed in conformal contact with a continuous gold film while it dewets, resulting in the formation of a periodic array of gold microstructures on an oxide substrate surface. When heated the gold beneath the grid selectively attaches to it due to the surface energy gradient which drives gold from the low surface energy oxide surface to the higher surface energy nickel mesh. With this process being confined to areas adjacent to and in contact with the grid surface the film ruptures at well-defined locations to form isolated islands of gold and subsequently, a periodic array of microstructures. The process can be carried out on substrates of different crystallographic orientations leading to nanostructures which are formed epitaxially and have orientations based on underlying substrate orientations. The process can be extended by placing a metallic foil of Pt or Ni over preformed templates, in which case a reduction in the size of the initial structures is observed. Placing a foil on structures with random placement and a wide size distribution results, not only in a size reduction, but also a narrowed size distribution. Additive processes are carried out by using materials which possess high vapor pressures much below the sublimation temperature of the template materials. In this case a germanium substrate was used as a source of germanium adatoms while gold or silver nanostructures were used as heterogeneous nucleation sites. At elevated temperatures the adatoms collect in sufficient quantities to transform each site into a liquid alloy which, upon cooling, phase separates into elemental components sharing a common interface and, hence, resulting in the formation of heterodimers and hollowed metal nanocrescents upon etching away the Ge. A process which combined aspects of the additive and subtractive process was carried out by using a metallic foil with a high vapor pressure and higher surface energy than the substrate surface (in this case Pd foil). This process resulted in the initial preformed gold templates being annihilated and replaced by nanostructures of palladium, thereby altering their chemical composition. The assembly process relies on the concurrent sublimation of palladium and gold which results in the complete transfer of the templated gold from the substrate to the foil, but not before the templates act as heterogeneous nucleation sites for palladium adatoms arriving to the substrate surface. Thus, the process is not only subtractive, but also additive due to the addition of palladium and removal of gold. / Mechanical Engineering
253

Characterization of lnGaAs/InP Heterostructure Nanowires Grown by Gas Source Molecular Beam Epitaxy

Cornet, David 06 1900 (has links)
<p> InGaAs/InP heterostructure nanowires (NWs) grown by gas source molecular beam epitaxy (GS-MBE) have been analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive x-ray spectroscopy (EDS). The morphology and interfacial properties of these structures have been compared to pure InP NWs and lattice-matched InGaAs!InP superlattice (SL) structures, respectively. Based on high-resolution x-ray diffraction (HRXRD) and photoluminescence (PL) measurements of the SLs a detailed structural model is proposed, consisting of strained InAsP and InGaAsP mono layers due to group-V gas switching and atomic exchange at the SL interfaces. The interfaces of the heterostructure NW s were an order of magnitude larger than those of the SLs and showed a distinct bulging morphology. Both of these characteristics are explained based on the slow purging of group-III material from the Au catalyst. Growth of lnGaAs on the sidewalls of the InP base of these wires was also observed, and occurs due to the shorter diffusion length of Ga adatoms as compared to In. </p> / Thesis / Master of Science (MSc)
254

Towards Fabrication of Flexible Solar Cells Using PN-Junction GaAs Nanowires

Ahmed, Nuzhat N. 05 1900 (has links)
<p> In the current research, use of p-n junction GaAs nanowires (NWs) grown by gas source molecular beam epitaxy on GaAs (111) B substrates for the fabrication of flexible solar cells are reported. The solar cells were fabricated by embedding the NWs in a polymer matrix (SU8 2), followed by ohmic contact formation to the tops of the NWs as well as the rear side of the substrate. I-V characteristic curves were obtained by illuminating the solar cells using a solar simulator, indicating a photovoltaic effect. NWs were also detached from the substrate by different methods and successfully transferred onto a flexible substrate for potential use as solar cells. Scanning electron microscopy was used throughout the research for characterization and optimization of the fabrication processes including NW embedment, removal from the substrate, and contact formation.</p> / Thesis / Master of Applied Science (MASc)
255

Nanowire Quantum Dot Photodetectors

Kuyanov, Paul 24 November 2017 (has links)
InAs/GaAs quantum dots (QDs) embedded within InP/GaP nanowires (NWs) were grown on Si substrates by Au-assisted and self-assisted vapor-liquid-solid (VLS) growth using molecular beam epitaxy (MBE). The morphology and structure of the NWs was characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The samples were analysed using photoluminescence (PL) and photocurrent measurements to study the properties of NW-based QDs. The composition of InAs x P 1-x QDs embedded within InP NWs was varied from x = 0.25 to x = 1, demonstrating the tuning of quantum confined energy levels. PL measurements demonstrated an emission peak that shifted towards lower energy levels as the As composition was increased. This result was also observed for QD absorption peaks through wavelength-dependent room temperature photocurrent measurements. InP NWs were successfully passivated with an AlInP shell, which was demonstrated through PL analysis. The growth mechanism of patterned self-assisted GaP NWs on Si was studied through SEM and TEM analysis. It was found that for large V/III flux ratios the Ga seed particle reduced in volume throughout growth, which led to a smaller NW diameter. Conversely, for small V/III flux ratios the Ga seed particle increased in volume throughout growth, resulting in larger NW diameters. The dependence of V/III flux ratio on NW growth was characterized, allowing the tuning of NW diameter. iv GaP NWs with p-i-n junctions were fabricated on a Si substrate with GaAs QDs embedded within the intrinsic region. To the author’s knowledge, this is the first time such a device was demonstrated. The device demonstrated diode characteristics as expected for a p-n junction. Wavelength-dependent photocurrent measurements demonstrated the absorption of light within GaAs QDs, which was collected through electric field dependent tunneling and thermionic emission. The absorption of light extended beyond the bandgap of GaP due to the GaAs QDs. / Thesis / Doctor of Philosophy (PhD)
256

Antimonide Nanowires for Multispectral Infrared Photodetection

Robson, Mitchell January 2018 (has links)
Multispectral capabilities of nanowires (NWs) were explored for InAs and InAsSb NWs on Si(111) substrates. NWs were grown with the vapour-solid (VS) growth mode in a molecular beam epitaxy (MBE) system using an oxide template to control positions and diameters. Early attempts to integrate InSb NWs and silicon substrates proved unsuccessful. Instead studies of InAs NWs on silicon, and eventually InAsSb/InAs NWs on silicon were completed to achieve large-diameter, infrared (IR) sensitive photodetectors. InAs NWs were grown on silicon substrates to study their morphology characteristics and vertical NW yield. The five different growth modes explored were (1) Au-assisted vapour-liquid-solid (VLS), (2) positioned Au-assisted, (3) vapour solid, (4) positioned Au-assisted VLS using a patterned oxide mask (VLS-SAE), and (5) selective area epitaxy (SAE) using a patterned oxide mask. Optimal temperature and V/III flux ratios for achieving a high vertical yield were found for the SAE growth mode. Further understanding of the InAs SAE growth mode was gained through modeling of various oxide hole filling scenarios. Each scenario was defined by the arrival rates of the group III and group V materials to the holes. A parameter space is discussed for the growth of high yield InAs NWs, dependent on the V/III flux ratio and temperature of growth. Large diameter InAsSb NWs for IR absorptance were grown on silicon using a high yield InAs stem. Several NW array diameters were grown simultaneously on the same substrate to measure multispectral photodetection. Diameters were controlled by NW spacing. Fourier transform IR (FTIR) spectroscopy was used to measure absorptance in the NWs. NW diameters spanned 440 – 520 nm which resulted in enhanced absorptance in the short-wave IR region. Simulations of the HE11 resonances of the NW arrays were performed and compared with the FTIR measurements. Initial electrical measurements demonstrated a diameter-dependent photocurrent. / Thesis / Doctor of Philosophy (PhD)
257

Silicon/Germanium Molecular Beam Epitaxy

Ericsson, Leif January 2006 (has links)
<p>Molecular Beam Epitaxy (MBE) is a well-established method to grow low-dimensional structures for research applications. MBE has given many contributions to the rapid expanding research-area of nano-technology and will probably continuing doing so. The MBE equipment, dedicated for Silicon/Germanium (Si/Ge) systems, at Karlstads University (Kau) has been studied and started for the first time. In the work of starting the system, all the built in interlocks has been surveyed and connected, and the different subsystems has been tested and evaluated. Service supplies in the form of compressed air, cooling water and electrical power has been connected. The parts of the system, their function and some of the theory behind them are described.</p><p>The theoretical part of this master’s thesis is focused on low-dimensional structures, so-called quantum wells, wires and dots, that all are typical MBE-built structures. Physical effects, and to some extent the technical applications, of these structures are studied and described.</p><p>The experimental part contains the MBE growth of a Si/Ge quantum well (QW) structure and characterisation by Auger Electron Spectroscopy (AES). The structure, consisting of three QW of Si0,8Ge0,2 separated by thicker Si layers, was built at Linköpings University (LiU) and characterised at Chalmers University of Technology (CTH). The result of the characterisation was not the expected since almost no Ge content could be discovered but an extended characterisation may give another result.</p><p>Keywords: Silicon, Germanium, Molecular Beam Epitaxy, MBE, Quantum wells</p> / <p>Molecular Beam Epitaxy (MBE) är en väl etablerad metod när det gäller tillverkning av låg-dimensionella strukturer för forskningsändamål och lämpar sig väl för användning inom det expanderande forskningsområdet nanoteknologi. MBE utrustningen vid Karlstads universitet (Kau), som är avsedd för kisel/germanium (Si/Ge) strukturer, har studerats och startats för första gången. Under studien av systemet har alla inbyggda förreglingar utretts och anslutits och de olika delsystemen har testats och utvärderats. Tryckluft, kylvatten och el har utretts och anslutits. Systemets delar, deras funktion och i viss mån den bakomliggande teorin har studerats.</p><p>Den teoretiska delen av detta arbete är inriktad mot låg-dimensionella strukturer d.v.s. kvant brunnar, kvanttrådar och kvantprickar, som alla är strukturer lämpliga för framställning i MBE processer. De fysikaliska effekterna och i viss mån de tekniska tillämpningarna för dessa strukturer har studerats.</p><p>Den experimentella delen består av MBE tillväxt av en Si/Ge kvantbrunn-struktur och karakterisering m.h.a. Auger Electron Spectroscopy (AES). Tillväxten av strukturen, som består av tre kvantbrunnar av Si0,8Ge0,2 separerade av tjockare Si-lager, utfördes på Linköpings Universitet (LiU) och karakteriseringen utfördes på Chalmers Tekniska Högskola (CTH). Resultatet av karakteriseringen var inte det förväntade då knappast något Ge innehåll kunde detekteras men en utökad undersökning skulle kanske ge ett annat resultat.</p><p>Sökord: Kisel, germanium, Molecular Beam Epitaxy, MBE, kvantbrunn</p>
258

Silicon/Germanium Molecular Beam Epitaxy

Ericsson, Leif January 2006 (has links)
Molecular Beam Epitaxy (MBE) is a well-established method to grow low-dimensional structures for research applications. MBE has given many contributions to the rapid expanding research-area of nano-technology and will probably continuing doing so. The MBE equipment, dedicated for Silicon/Germanium (Si/Ge) systems, at Karlstads University (Kau) has been studied and started for the first time. In the work of starting the system, all the built in interlocks has been surveyed and connected, and the different subsystems has been tested and evaluated. Service supplies in the form of compressed air, cooling water and electrical power has been connected. The parts of the system, their function and some of the theory behind them are described. The theoretical part of this master’s thesis is focused on low-dimensional structures, so-called quantum wells, wires and dots, that all are typical MBE-built structures. Physical effects, and to some extent the technical applications, of these structures are studied and described. The experimental part contains the MBE growth of a Si/Ge quantum well (QW) structure and characterisation by Auger Electron Spectroscopy (AES). The structure, consisting of three QW of Si0,8Ge0,2 separated by thicker Si layers, was built at Linköpings University (LiU) and characterised at Chalmers University of Technology (CTH). The result of the characterisation was not the expected since almost no Ge content could be discovered but an extended characterisation may give another result. Keywords: Silicon, Germanium, Molecular Beam Epitaxy, MBE, Quantum wells / Molecular Beam Epitaxy (MBE) är en väl etablerad metod när det gäller tillverkning av låg-dimensionella strukturer för forskningsändamål och lämpar sig väl för användning inom det expanderande forskningsområdet nanoteknologi. MBE utrustningen vid Karlstads universitet (Kau), som är avsedd för kisel/germanium (Si/Ge) strukturer, har studerats och startats för första gången. Under studien av systemet har alla inbyggda förreglingar utretts och anslutits och de olika delsystemen har testats och utvärderats. Tryckluft, kylvatten och el har utretts och anslutits. Systemets delar, deras funktion och i viss mån den bakomliggande teorin har studerats. Den teoretiska delen av detta arbete är inriktad mot låg-dimensionella strukturer d.v.s. kvant brunnar, kvanttrådar och kvantprickar, som alla är strukturer lämpliga för framställning i MBE processer. De fysikaliska effekterna och i viss mån de tekniska tillämpningarna för dessa strukturer har studerats. Den experimentella delen består av MBE tillväxt av en Si/Ge kvantbrunn-struktur och karakterisering m.h.a. Auger Electron Spectroscopy (AES). Tillväxten av strukturen, som består av tre kvantbrunnar av Si0,8Ge0,2 separerade av tjockare Si-lager, utfördes på Linköpings Universitet (LiU) och karakteriseringen utfördes på Chalmers Tekniska Högskola (CTH). Resultatet av karakteriseringen var inte det förväntade då knappast något Ge innehåll kunde detekteras men en utökad undersökning skulle kanske ge ett annat resultat. Sökord: Kisel, germanium, Molecular Beam Epitaxy, MBE, kvantbrunn
259

Study of III-nitride growth kinetics by molecular-beam epitaxy

Moseley, Michael William 02 April 2013 (has links)
Since the initial breakthroughs in structural quality and p-type conductivity in GaN during the late 1980s, the group-III nitride material system has attracted an enormous amount of interest because of its properties and applications in both electronics and optoelectronics. Although blue light-emitting diodes have been commercialized based on this success, much less progress has been made in ultraviolet emitters, green emitters, and photovoltaics. This lack of development has been attributed to insufficient structural and electrical material quality, which is directly linked to the growth of the material. The objective of this work is to expand the understanding of III-nitride growth towards the improvement of current device capabilities and the facilitation of novel device designs. Group-III nitride thin films are grown by molecular-beam epitaxy in a pulsed, metal-rich environment. The growths of nitride binaries and ternaries are observed in situ by transient reflection high-energy electron diffraction (RHEED) intensities, which respond to the behavior of atoms on the growing surface. By analyzing and interpreting these RHEED signatures, a comprehensive understanding of nitride thin film growth is obtained. The growth kinetics of unintentionally doped GaN by metal-rich MBE are elucidated, and a novel method of in situ growth rate measurement is discovered. This technique is expanded to InN, highlighting the similarity in molecular-beam epitaxy growth kinetics between III-nitride binaries. The growth of Mg-doped GaN is then explored to increase Mg incorporation and electrical activation. The growth of InxGa1-xN alloys are investigated with the goal of eliminating phase separation, which enables single-phase material for use in photovoltaics. Finally, the growth of unintentionally doped and Mg-doped AlGaN is investigated towards higher efficiency light emitting diodes. These advancements in the understanding of III-nitride growth will address several critical problems and enable devices relying on consistent growth in production, single-phase material, and practical hole concentrations in materials with high carrier activation energies.
260

Selective area growth and characterization of GaN based nanostructures by metal organic vapor phase epitaxy

Goh, Wui Hean 17 January 2013 (has links)
The objective of this project is to establish a new technology to grow high quality GaN based material by nano selective area growth (NSAG). The motivation is to overcome the limit of the conventional growth method, which yield a high density of dislocation in the epitaxial layer. A low dislocation density in the epitaxial layer is crucial for high performance and high efficiency devices. This project focuses on growth and material characterization of GaN based nanostructures (nanodots and nanostripes) grown using the NSAG method that we developed. NSAG, with a precise control of diameter and position of nanostructures opens the door to new applications such as: 1) single photon source, 2) photonic crystal, 3) coalescence of high quality GaN template, and 4) novel nanodevices.

Page generated in 0.0286 seconds