• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Incorporation du magnésium dans les squelettes calcitiques des échinodermes et des éponges hypercalcifiées / Magnesium incorporation in calcite skeletons of echinoderms and hypecalcified sponges

Hermans, Julie 02 July 2010 (has links)
De nombreux organismes marins précipitent des squelettes en calcite magnésienne. Depuis près d’un siècle, il est connu que les concentrations en magnésium de ces squelettes sont influencées par les conditions environnementales, telle la température, régnant au moment de leur dépôt. Dans le contexte actuel de changement climatique, cette propriété a promu l’usage de plusieurs taxons en tant qu’archive naturelle des conditions environnementales du passé. Cependant, les squelettes d’espèces sympatriques, voire d’individus de la même espèce, peuvent présenter des concentrations en magnésium très différentes, attestant de l’influence de facteurs biologiques sur la détermination de la concentration squelettique en cet élément. Une parfaite compréhension des mécanismes d’incorporation du magnésium dans les squelettes est donc requise pour valider l’usage de ce paléotraceur. De plus, la solubilité des calcites augmentant avec leur concentration en magnésium, l’incorporation de cet élément conditionne en partie la stabilité des squelettes calcitiques dans un océan en cours d’acidification.<p>Le présent travail contribue à l’étude des différents facteurs, tant environnementaux que physiologiques et minéralogiques, susceptibles d’affecter l’incorporation du magnésium dans les squelettes en calcite de trois taxons présentant des concentrations en cet élément particulièrement élevées, une éponge hypercalcifiée, Petrobiona massiliana, et deux échinodermes, Paracentrotus lividus et Asterias rubens.<p>Dans une première partie, les effets de plusieurs facteurs environnementaux ont été étudiés, en milieu naturel dans le cas de l’éponge, étant donné son incapacité à survivre en aquarium, et en conditions contrôlées d’aquarium dans le cas des deux échinodermes. Une influence environnementale prépondérante de la température sur la concentration en magnésium squelettique a été mise en évidence dans les 3 modèles biologiques étudiés. Une fois les facteurs génétiques (espèce) et structurels (élément squelettique) fixés, une relation positive liant la température à la concentration en magnésium squelettique a été caractérisée en milieu naturel chez l’éponge hypercalcifiée P. massiliana et en conditions contrôlées chez l’oursin P. lividus. Chez ce dernier, cette relation, non linéaire, se stabilise aux plus hautes températures envisagées, probablement suite à la saturation d’un processus biologique intervenant dans l’incorporation de cet élément. La salinité, un autre facteur environnemental majeur en milieu marin, influence elle aussi positivement la concentration en magnésium dans le squelette de l’étoile de mer A. rubens. A nouveau, il est proposé que cette influence de l’environnement soit modulée par un processus biologique: chez les échinodermes, la concentration en magnésium, contrairement à celle du calcium, n’est pas régulée dans le liquide coelomique. Elle est donc directement influencée par la salinité, et affecte probablement la concentration en cet élément dans le squelette formé. La diffusion depuis l’eau de mer jusqu’au site de calcification par l’intermédiaire des fluides internes a en effet été suggérée sur base du fait que le rapport Mg/Ca de l’eau de mer influence celui des squelettes calcaires<p>Une fois l’influence, directe ou indirecte, des facteurs environnementaux exclue, 44% de la variabilité du rapport Mg/Ca du squelette des échinodermes restent à expliquer. Les expériences de croissance d’échinodermes réalisées en conditions contrôlées indiquent que ce rapport est indépendant de la vitesse de croissance dans ce groupe, contrairement aux hypothèses émises dans la littérature.<p>Dans la seconde partie, la modulation des facteurs minéralogiques par les facteurs biologiques a été investiguée. Pour ce faire, d’une part, les interactions entre rapport Mg/Ca en solution et matrice organique de minéralisation ont été étudiées dans un modèle in vitro. D’autre part, les relations entre soufre et magnésium dans le squelette ont été décryptées.<p>Le rapport Mg/Ca de la solution de précipitation a une influence prépondérante sur la concentration en magnésium du carbonate de calcium précipité in vitro, attestant de l’importance de la régulation de la composition du fluide de calcification et des mécanismes de transport la contrôlant. Deux mécanismes biologiques complémentaires permettent de favoriser l’incorporation, dans les calcites biogéniques, de quantités de magnésium largement supérieures à celles observées dans les calcites inorganiques, et ce, malgré la forte hydratation de ce cation :l’intervention d’agents chélateurs du magnésium et le passage par une phase de carbonate de calcium amorphe (CCA). Les molécules de la matrice organique de minéralisation jouent entre autres le rôle de chélateur du magnésium, réduisant son état d’hydratation et facilitant ainsi son incorporation dans le minéral. Un rôle similaire a été suggéré pour les sulfates en solution, au vu de la corrélation observée dans ce travail entre les rapports Mg/Ca et S/Ca dans la phase minérale des calcites biogéniques étudiées. La matrice organique affecte elle aussi la concentration en magnésium dans le cristal, probablement via la stabilisation de la phase de CCA nécessaire à l’incorporation de concentrations élevées de cet élément: ainsi, les macromolécules de la matrice organique du test d’oursin induisent in vitro la formation de calcites plus riches en magnésium que celles formées en présence de matrice de piquant, un résultat concordant avec le fait que, in vivo, le test contient des concentrations en magnésium plus élevées que les piquants.<p>Cette thèse de doctorat a donc soulevé l’importance des effets biologiques dans la détermination du rapport Mg/Ca dans les calcites biogéniques. Les résultats obtenus montrent que le décryptage des mécanismes impliqués dans l’incorporation du magnésium se doit de considérer la phase amorphe transitoire qui précède la cristallisation. Des effets environnementaux affectent eux aussi la concentration squelettique en magnésium, mais nos résultats suggèrent qu’ils agissent au travers d’une modulation des effets biologiques, et non par une influence thermodynamique directe. Cette hypothèse, si elle est confirmée, impose la plus grande prudence lors de l’utilisation des squelettes en calcite en tant que paléotraceurs.<p><p><p>SUMMARY<p>The magnesium concentration in calcite skeletons produced by marine invertebrates is known to be dependent on several environmental parameters, including temperature, salinity and seawater Mg/Ca ratio. This property prompted the use of this concentration as a proxy of the considered parameters. However, skeletal magnesium contents in sympatric species and even in individuals of the same species may be rather different. These inter and intra-individual variabilities indicate that biological factors also affect magnesium incorporation into biogenic calcites. Magnesium incorporation mechanisms are still unknown in calcifying invertebrates, a fact that questions the validity of this element as a paleoproxy. Moreover, higher magnesium contents increase calcite solubility and could therefore worsen the case of calcifying organisms facing ocean acidification linked to global change.<p>The present thesis is a contribution to the study of the environmental, biological and mineralogical factors affecting magnesium incorporation into the calcitic skeletons of 3 taxa, i.e. one hypercalcified sponge, Petrobiona massiliana, and two echinoderms, Paracentrotus lividus and Asterias rubens.<p>The first part of this work was dedicated to the study of several environmental factors affecting the magnesium concentration in the calcite skeleton of the 3 studied organisms. Consequently to its low survival in aquarium, the sponge was studied using field specimens collected along an environmental gradient. Echinoderms were grown in controlled conditions in aquarium. Once the genetic (species) and structural (skeletal element) factors were fixed, skeletal magnesium concentration was positively related to temperature in the 3 studied species. The Mg/Ca ratio of the test of aquarium-grown P. lividus increased with temperature until a plateau which was probably due to the saturation of a biological process involved in magnesium incorporation. A positive effect of salinity, an other major environmental parameter, on skeletal Mg/Ca was demonstrated in aquarium-grown A. rubens. This influence can also be linked to a biological process: contrary to magnesium, calcium concentration is controlled in the coelomic fluid, from which ions probably diffuse through the living tissues to the calcification site. Thus, the observed positive relation can be explained by the fact that a salinity increase raises the coelomic Mg/Ca ratio, which, according to previous studies, affected the Mg/Ca ratio of the precipitated skeleton.<p>In addition to the reported environmental influences, 44% of the skeletal Mg/Ca ratio variation remained unexplained in echinoderms. The absence of growth rate effect on magnesium incorporation into the echinoderm skeleton was demonstrated in aquarium experiments, contrary to previous literature statements. Other biological factors must therefore affect the incorporation of this element.<p>In the second part of this work, the modulation of mineralogical factors by biological factors was investigated. The interaction between Mg/Ca ratio in the precipitation solution and organic matrix was studied in an in vitro precipitation experiment. In addition, the relation between skeletal Mg/Ca and S/Ca ratios was investigated.<p>A major influence of the precipitation solution Mg/Ca ratio on the magnesium concentration of in vitro precipitated minerals was evidenced, highlighting the importance of transport mechanisms which determine the composition of the calcifying solution. The<p>higher magnesium concentrations presented in some biogenic calcites in comparison to inorganic calcites can be attributed to the action of chelating molecules and to the transition trough an amorphous phase. The strong tendency of magnesium towards hydration can be overcome by the involvement of molecules that can function as magnesium chelators and, therefore, favour the formation of calcite with a high magnesium content. Organic matrix macromolecules have been suggested to proceed as magnesium chelators, reducing the hydration of this ion and facilitating its incorporation into calcite. A similar function was suggested for sulphates that were measured in the echinoderm skeleton. This would explain the positive correlation between skeletal Mg/Ca and S/Ca ratios observed in the studied species. Organic matrix macromolecules also increased the magnesium concentration of minerals precipitated in vitro, probably stabilizing the transient phase of amorphous calcium carbonate, which can incorporate high quantities of magnesium in its structure. The enhancement of magnesium incorporation was more pronounced with the organic matrix extracted from the test of sea urchin than with that extracted from their spines. This result was in agreement with the in vivo skeletal Mg/Ca ratios in P. lividus skeleton that were higher in the test than in the spines.<p>This study demonstrated the importance of the biological effects in the determination of Mg/Ca ratios in biogenic calcites. According to the suggested hypotheses, the understanding of mechanisms involved in magnesium incorporation should take the transient amorphous phase into account. Magnesium concentration in biogenic calcite was also affected by environmental parameters, but these influences could proceed through the indirect modulation of biological rather than a direct thermodynamic control. This hypothesis, if proved correct, would have deep implications for the use of magnesium in calcite skeletons as a paleoproxy. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
2

L’origine des morphogenèses épithéliales et leurs implications concernant l’évolution précoce des métazoaires / Epithelial morphogenesis : origin and implications for early metazoan evolution

Lapebie, Pascal 26 March 2010 (has links)
Les premières étapes de l’évolution animale restent obscures mais peuvent toutefois être appréhendées par l’étude comparative du développement des animaux basaux comme les éponges, les cnidaires ou les cténophores. Une des innovations majeures dans l’évolution des formes animales est l’apparition de l’épithélium, classiquement considérée comme une synapomorphie des eumétazoaires. Les homoscléromorphes sont les seules éponges à partager avec Eumetazoa la présence d’un véritable épithélium avec notamment une membrane basale contenant du collagène de type IV. Dans ce clade, la recherche des mécanismes épithéliaux sous-tendant le développement a pour enjeu la meilleure compréhension de leur origine et de leur importance dans l’évolution animale. Le travail de cette thèse a consisté à caractériser chez Oscarella lobularis des outils moléculaires responsables des morphogenèses épithéliales. Trois d’entre eux ont été étudiés chez l’adulte. Le premier, la voie WNT canonique, est capable d’induire l’invagination de l’épithélium externe de l’éponge, ce qui n’est pas sans rappeler ce même rôle dans d’autres contextes épithéliaux d’eumétazoaires. Le deuxième est la voie WNT non canonique ou « voie PCP », qui, quand elle est bloquée, empêche l’invagination initiée par la voie canonique. Enfin, le troisième outil est un membre de la famille des gènes à boîte T, OlTbx qui s’exprime spécifiquement dans l’épithélium après l’invagination sus-mentionnée. Cette expression rappelle des expressions d’autres gènes Tbx dans le feuillet endomésodermique invaginé lors de la gastrulation des eumétazoaires. L’invagination semble utiliser une partie d’un même programme génétique dans la gastrula des Eumetazoa et dans l’adulte des Homoscleromorpha. Mes résultats ouvrent des perspectives intéressantes concernant l’éventuelle reconnaissance d’un stade gastrula chez les éponges, point de discorde de la zoologie classique. / The first steps of animal evolution remain obscure but, nevertheless can be better understood by comparative studies of the most basally branching animals, such as sponges, cnidarians and ctenophores. Epithelium is one of the major innovations in the evolution of animal forms and is generally considered as one of the synapomorphies of Eumetazoa. The homoscleromorphs are the only sponges, with Eumetazoa, to have a true epithelium with a basal membrane containing type IV collagen. In this clade, the investigation of epithelial processes underlying development would give insights into their origin and their importance in animal evolution. The aim of my work was to characterize molecular tools involved in epithelial morphogenesis in Oscarella lobularis. I was able to characterize three of those molecular tools. The first one is the canonical WNT pathway inducing invagination of the external epithelium of the sponge, reminiscent of the same function in other epithelial contexts in Eumetazoa. The second one is the non-canonical WNT pathway or “PCP pathway” which blocks invagination when it is inhibited. The third one is a member of the T-box genes family, OlTbx, specifically expressed in the epithelial layer formed by the above-mentioned invagination. Similarly, other Tbx genes are expressed in the endomesodermal layer during eumetazoan gastrulation. Invagination processes involved in both eumetazoan gastrula and homoscleromorph adult tissue seem to share a part (WNT/Tbx) of a common genetical program. My results provide new investigation prospects, in order to answer the difficult question of the origin of gastrulation in sponges.
3

Biomineralization of basal skeletons in recent hypercalcified sponges: a submicronic to macroscopic model / Biominéralisation des squelettes basaux chez les éponges hypercalcifiées écentes: un modèle submicronique à macroscopique

Gilis, Melany 14 October 2011 (has links)
Biologically controlled mineralization implies that organisms devote a part of their physiological activity to build up a specific mineralized skeleton. A preliminary comprehensive general view of the morphology and physiology of a given organism is therefore required before trying to understand where and how its biomineralizing system functions. Furthermore, the entire biomineralization sequence is not mediated by purely inorganic mineralogical rules but rather by a cellular machinery. Accordingly, a mineralogical characterization should be linked to a histological and cytological investigation of mineralizing cells to understand how a skeleton is produced. In the present thesis, we developed such a multi-disciplinary approach of some biomineralization processes of the massive basal skeleton in a few Recent hypercalcified sponges, likely survivors from Palaeozoic and early Mesozoic seas.<p>The three first chapters of this thesis are dedicated to the Mediterranean Calcarea Petrobiona massiliana, a conveniently accessible living hypercalcified sponge whereas all other Recent hypercalcified species are tropical and less easily reached. This model species permitted an initial morphological approach followed by an integrated biological and mineralogical study of biomineralization mechanisms. The fourth chapter aims at the comparative mineralogical study of the basal skeleton of eight tropical Recent hypercalcified demonsponges.<p>In the first chapter, important modifications and/or morphogenesis at the tissular or cellular level in response to life cycle phases and environmental conditions were depicted in specimens of Petrobiona massiliana. A survey of “storage cells” filling trabecular tracts, which are specific to P. massiliana, suggested that these cells may provide energy and a pool of toti- or pluripotent cells able to restructure the aquiferous system and repopulate cell types like pinacocytes. This potentiality of "storage cells would allow the sponge to sustain important physiological activities, like calcification, along its life cycle. Furthermore, basopinacocytes, cells delineating basally the soft tissue from the underlying basal skeleton, were identified through ultrastructural observations as the most probable cell type involved in the formation of the basal skeleton.<p>In the second chapter, the skeleton was found to be composed of ca. 50 to 100 nm crystallized grains as the smallest skeletal units, likely initially deposited in a mushy amorphous state. TEM and SEM observations further highlighted that these submicronic grains were assembled in clusters or fibres, the later even laterally associated into bundles. A model of crystallization propagation through amorphous submicronic granular units is proposed to explain the single-crystal feature of these micron-scale structural units, as demonstrated by selected area electron diffraction (SAED) in TEM. Finally, these units were assembled into a defined microstructure forming flattened growth layers called "sclerodermites", which superposed to produce the massive basal skeleton. In addition, X-ray diffraction (XRD) and energy electron loss spectroscopy (EELS) analyses highlighted respectively heterogeneous concentration and spatial distribution of Mg and Ca ions in the skeleton and structural units. This characterization highlighted mineralogical features, not conforming to the inorganic principles, and presuming a highly biologically regulated construction of the basal skeleton.<p>Accordingly, in the third chapter, it arose that the endomembrane system of basopinacocytes might play a dual function in the production and transport of both mineralizing ions and organic matrices. Combining partial decalcification methods with histochemical dyes and observing ultra-thin sections of the mature basal skeleton in TEM, very spatially and functionally diverse organic matrix components were found to occur in growing and mature portions of the skeleton. The following model of biomineralization was proposed for Petrobiona massiliana: basopinacocytes would use the endomembrane system pathway to produce and carry organic-coated submicronic amorphous grains in a mushy state within intracellular vesicles. These would then be released through the basal cell membrane toward the growing layer of the skeleton, where a highly structured gel-like organic framework, rich in sulfated/acidic GAGs-rich macromolecules, secreted by basopinacocytes, would ensure their assemblage into oriented fibres or clusters.<p>In the fourth chapter, the basal skeleton of eight tropical Recent hypercalcified species belonging to demosponges: Acanthochaetetes wellsi, Willardia caicosensis, Astrosclera willeyana, Ceratoporella nicholsoni, Goreauiella auriculata, Hispidopetra miniana, Stromatospongia norae and Calcifibrospongia actinostromarioides, were compared. Some mineralogical nano- to submicronic patterns already observed in the Calcarea P. massiliana, appeared as general features: the occurrence of submicronic granular units, their coherent assemblage into monocrystalline fibres and bundles and the likely presence of organic material around all structural units. Additional features brought new insights in our comprehension of biomineralization mechanisms in hypercalcified sponges. Among them, micro-twin and stacking-fault planes aligned with the fibres/bundles axis and crossing over submicronic granular units characterized the skeleton of most aragonitic species. This highly supports the crystallization propagation model proposed for P. massiliana, although it additionally suggests that it should occur only after the oriented assemblage of submicronic grains. Furthermore, lighter transverse striations separated by few nanometres occurred systematically in fibres and bundles of the eight basal skeletons investigated, suggesting the involvement of nanoscale intracrystalline fibrils in the biological control.<p>In conclusion, this comparative study of nine Recent hypercalcified sponges belonging to phylogenetically distant taxa resulted in the proposition of a shared biomineralization model based on the production of micron and submicron-scale structural units to build up macro-scale basal skeletons under a high biological control. We suggest that the cellular toolkit used for the biologically controlled biomineralization in these sponges is very ancient<p>and was already developed by their early Palaeozoic ancestors. Furthermore, this model supports recent concepts of calcium carbonate biomineralization developed for example in corals, molluscs and echinoderms, suggesting an even more universal and ancestral character of initial biomineralization mechanisms in all Metazoa producing a calcium carbonate skeleton.<p><p>La minéralisation biologiquement contrôlée implique qu’un organisme consacre une partie de son activité physiologique à l'élaboration de son squelette. La connaissance de sa morphologie et de sa physiologie est donc une étape préliminaire indispensable pour comprendre les mécanismes de formation de celui-ci. L’entièreté du processus de biominéralisation ne dépend pas simplement de principes fondamentaux issus de la minéralogie inorganique mais aussi de mécanismes cellulaires particuliers. La caractérisation minéralogique d'un squelette devrait donc être systématiquement liée à une étude histologique et cytologique des cellules impliquées dans la formation du biominéral. La thèse présentée ici a suivi une telle approche multidisciplinaire de certains mécanismes de biominéralisation du squelette basal de plusieurs éponges hypercalcifiées actuelles, considérées comme reliques d'espèces plus anciennes du Paléozoïque et Mésozoïque.<p>Les trois premiers chapitres de cette thèse concernent l'espèce calcaire de Méditerranée, Petrobiona massiliana, une éponge hypercalcifiée actuelle plus accessible que d'autres principalement distribuées dans les mers tropicales. Une approche de sa morphologie générale a été réalisée en préliminaire à une étude de ses mécanismes de biominéralisation, intégrant une caractérisation minéralogique et biologique. Le quatrième chapitre compare d’un point de vue minéralogique le squelette basal de huit autres espèces hypercalcifiées tropicales appartenant aux démosponges.<p>Au cours du premier chapitre, d'importantes modifications morphogénétiques à l'échelle tissulaire et cellulaire, liées à certaines phases du cycle biologique et aux conditions environnementales, ont ainsi été mises en évidence chez Petrobiona massiliana. Par l'observation de modifications de l'organisation et de l'ultrastructure des cellules de réserves remplissant les cordons trabéculaires, structures spécifiques de l'espèce, un rôle dans l'approvisionnement nutritif des cellules de l'éponge ainsi qu'un caractère toti- ou pluripotent leur ont été conférés. Les fonctions potentielles de ces cellules dites de réserves pourraient permettre à l'éponge de maintenir des activités physiologiques importantes, telles que la calcification, au cours de son cycle vital. Finalement, l'analyse ultrastructurale des tissus de P. massiliana a permis d'identifier les basopinacocytes, cellules délimitant les tissus mous du squelette basal, comme le type cellulaire ayant le plus de probabilité d'être impliqué dans la formation de ce dernier.<p>Dans le deuxième chapitre, des granules de 50 à 100 nm de diamètre se sont avérés les plus petites unités structurales du squelette basal de Petrobiona massiliana, probablement déposées initialement dans un état amorphe à consistance molle. Des observations en MEB et MET ont mis en évidence l'assemblage de ces granules en amas ou fibres, ces dernières étant elles-mêmes latéralement associées en faisceaux. Un modèle impliquant la propagation de la<p>cristallisation au travers de ces assemblages de granules submicroniques a été établi pour expliquer le caractère monocristallin des unités microstructurales, démontré par diffraction électronique en MET. Leur assemblage en une microstructure particulière produisant des couches\ / Doctorat en Sciences / info:eu-repo/semantics/nonPublished

Page generated in 0.0233 seconds