Spelling suggestions: "subject:"equações semilinear elípticas"" "subject:"equações lineares elípticas""
1 |
Um problema semilinear elíptico em domínio fino com termos de reações concentradas na fronteira / Semilinear elliptic equations in thin domains with reaction terms concentrating on boundaryManjate, Salvador Rafael 02 September 2015 (has links)
Analisamos o comportamento assintótico de uma família de equilíbrios de uma equação de reação-difusão com a condição de Neumann homegênea definido num domínio fino bidimensional com termos de reação concentradas em uma vizinhança oscilante da fronteira. Assumimos que o domínio e portanto a vizinhança oscilante se degeneram em um intervalo quando o parâmetro positivo tende a zero. O objetivo principal foi mostrar que essa família de soluções, converge para uma equação limite unidimensional, que captura a geometria e o comportamento assintótico dos conjuntos abertos onde o problema é estabelecido. De fato mostramos a continuidade da família de equilíbrios / In this work we analyze the behavior of a family of stead state solutions of a semilinear reaction-diffusion equation with homogeneous Neumann boundary condition, posed in a two-dimensional thin domain with reaction term concentrated in an narrow oscillating neighborhood. Indeed, we assume that the domain of definition of the solutions degenerates into an interval as a small parameter $\\epsilon$ goes to zero. Our main result is that this family of solutions converge to the solution of a one-dimensional limit equation capturing the geometry and oscillatory behaviour of the open sets where the problem is estabilished.
|
2 |
Um problema semilinear elíptico em domínio fino com termos de reações concentradas na fronteira / Semilinear elliptic equations in thin domains with reaction terms concentrating on boundarySalvador Rafael Manjate 02 September 2015 (has links)
Analisamos o comportamento assintótico de uma família de equilíbrios de uma equação de reação-difusão com a condição de Neumann homegênea definido num domínio fino bidimensional com termos de reação concentradas em uma vizinhança oscilante da fronteira. Assumimos que o domínio e portanto a vizinhança oscilante se degeneram em um intervalo quando o parâmetro positivo tende a zero. O objetivo principal foi mostrar que essa família de soluções, converge para uma equação limite unidimensional, que captura a geometria e o comportamento assintótico dos conjuntos abertos onde o problema é estabelecido. De fato mostramos a continuidade da família de equilíbrios / In this work we analyze the behavior of a family of stead state solutions of a semilinear reaction-diffusion equation with homogeneous Neumann boundary condition, posed in a two-dimensional thin domain with reaction term concentrated in an narrow oscillating neighborhood. Indeed, we assume that the domain of definition of the solutions degenerates into an interval as a small parameter $\\epsilon$ goes to zero. Our main result is that this family of solutions converge to the solution of a one-dimensional limit equation capturing the geometry and oscillatory behaviour of the open sets where the problem is estabilished.
|
3 |
Soluções limites para problemas elípticos envolvendo medidas / Limit solutions for elliptic problems involving measuresPresoto, Adilson Eduardo, 1983- 19 August 2018 (has links)
Orientadores: Francisco Odair Vieira de Paiva, Augusto César Ponce / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-19T10:14:29Z (GMT). No. of bitstreams: 1
Presoto_AdilsonEduardo_D.pdf: 2067267 bytes, checksum: 79c3ffe06a88b7cba190920dcf512036 (MD5)
Previous issue date: 2011 / Resumo: No trabalho precursor de Brezis, Marcus e Ponce [15], estudou-se problemas semilineares elípticos com uma não linearidade não decrescente, contínua e dependendo apenas da variável dependente e com medidas como dados. Os autores estavam particularmente interessados no caso em que a equação não possuía solução. Numa das técnicas estudadas, eles aproximaram a medida por funções suaves através da convolução e, sob a condição adicional de convexidade da não linearidade, mostraram que as soluções correspondentes convergiam para a solução do mesmo problema com a maior medida menor do que ou igual a medida inicial tal que o problema tinha solução. O nosso objetivo é explorar profundamente este método. Ao invés de lidar com a convolução, consideramos sequências de medidas de Radon que convergem na topologia fraca-estrela e tais que o problema tem solução para cada termo. A pergunta que se põe é: as soluções convergem? Se sim, temos que o limite satisfaz a mesma equação com uma medida, em geral, distinta do limite-fraco, logo desejamos também determinar esta medida. Quando temos uma não linearidade, como descrita no parágrafo acima, as respostas têm um alto grau de variação, conforme os exemplos dados nos trabalhos de Ponce, e são inconclusivas. A proposta da tese é estudar a convergência dessas soluções para equações e sistemas semilineares elípticos com a não linearidade sendo do tipo exponencial. No caso em que temos a equação semilinear no plano, as soluções convergem para a solução do mesmo problema com uma medida que depende apenas do limite-fraco da sequência. Também, vemos que em dimensões superiores essas asserções não se verificam mais. Por fim, o sistema que aplicamos a técnica acima é o Sistema de Chern-Simons, surgido na física teórica e que representa o modelo de Chern-Simons Abeliano relativístico envolvendo duas partículas Higgs e dois campos calibrados / Abstract: In the pioneering work of Brezis, Marcus and Ponce [15], the authors studied elliptic semilinear problems with a continuous nondecreasing nonlinearity which vanishes at origin and depends only on dependent variable, and with measures as inicial data. They were particularly interested in the case which the equation does not have a solution. One of the techniques discussed was the approach of the measure by smooth functions via convolution. Under the additional condition of convexity, they showed that the corresponding solutions converge to the solution for the same problem with the largest measure less than inicial datum such that the problem admits a solution. Our aim is to explore deeply this method. Instead of dealing with the convolution, we consider sequences of Radon measures which converge in weak-star topology and such that the problem has solution for each term. The question posted is: the solutions converge? If yes, the limit solves the same problem with, in general distinct from the weak limit, another measure, thus, we also wish to determine this measure. The purpose of the thesis is to study the convergence of solutions for equations and systems with exponential nonlinearity. If we have the equation semilinear on the plane, the solutions converge to a solution for the same problem with a measure which depends only on weak limit of the sequence. We also see that in upper dimensions the results are no longer assured. In the end, the system concerned is the Chern-Simons System that comes from theoretical physics and it represents a relativistic Abelian Chern- Simons model with two Higgs particles and two gauge fields / Doutorado / Matematica / Doutor em Matemática
|
4 |
Elliptic equations with nonlinear gradient terms and fractional diffusion equations = Equações elípticas com termos gradientes não lineares e equações de difusão fracionárias / Equações elípticas com termos gradientes não lineares e equações de difusão fracionáriasSantos, Matheus Correia dos, 1987- 26 August 2018 (has links)
Orientadores: Lucas Catão de Freitas Ferreira, Marcelo da Silva Montenegro, José Antonio Carrillo de la Plata / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-26T15:13:15Z (GMT). No. of bitstreams: 1
Santos_MatheusCorreiados_D.pdf: 865476 bytes, checksum: 31a8b558231b701d81c20bf2712e4f50 (MD5)
Previous issue date: 2015 / Resumo: Analisaremos dois problemas neste trabalho. Na primeira parte, estudaremos a existência de soluções para uma equação elíptica semilinear no espaço euclidiano todo e com dependência do gradiente e onde nenhuma restrição é imposta sobre o comportamento da não linearidade no infinito. Provaremos que existe uma solução que é localmente única e que herda muitas das propriedades de simetria da não linearidade. A positividade da solução e seu comportamento assintótico também são analisados. Os resultados obtidos também podem ser estendidos para outros casos como o de domínios exteriores ou o semiespaço e também para alguns operadores fracionários. Na segunda parte, analisaremos o comportamento assintótico das soluções da versão fracionária unidimensional da equações de meios porosos introduzida por Caffarelli e Vázquez e onde a pressão é obtida como a inversa do laplaciano fracionário da densidade. Devido à convexidade do núcleo do potencial de Riesz em dimensão um, mostraremos que a entropia associada à equação é displacement convex e satisfaz uma desigualdade funcional envolvendo a dissipação da entropia e a distância de transporte euclidiana. Um argumento por aproximação mostra que essa desigualdade funcional é suficiente para deduzir que a entropia das soluções converge exponencialmente para a entropia do estado estacionário. Também provaremos uma nova desigualdade de interpolação que permitirá obter a convergência exponencial das soluções em espaços Lp / Abstract: We analyse two problems in this work. In the first part we study the existence of solutions to a semilinear elliptic equation in the whole space and with dependence on the gradient and where no restriction is imposed on the behavior of the nonlinearity at infinity. We prove that there exists a solution which is locally unique and inherits many of the symmetry properties of the nonlinearity. Positivity and asymptotic behavior of the solution are also addressed. Our results can be extended to other domains like half-space and exterior domains and also to some fractional operators. For the second part, we analyse the asymptotic behavior of solutions to the one dimensional fractional version of the porous medium equation introduced by Caffarelli and Vázquez and where the pressure is obtained as the inverse of the fractional Laplacian of the density. Due to the convexity of the kernel of the Riesz potential in one dimension, we show that the entropy associated with the equation is displacement convex and satisfies a functional inequality involving also entropy dissipation and the Euclidean transport distance. An argument by approximation shows that this functional inequality is enough to deduce the exponential convergence, in the entropy level, of solutions to the unique steady state. A new interpolation inequality is also proved in order to obtain the exponential decay also in Lp spaces / Doutorado / Matematica / Doutor em Matemática
|
Page generated in 0.1004 seconds