Spelling suggestions: "subject:"equacoes polinomial"" "subject:"utuacoes polinomial""
1 |
Solubilidade de equações polinomiais por radicais reais e cálculo do grupo de galois em Q[X]Azevedo, Danielle Santos January 2012 (has links)
Neste trabalho apresentamos um teorema que explicita condições necessárias e suficientes para que um polinômio f(X) 2 Q[X] seja solúvel por radicais reais, juntamente com algumas aplicações do mesmo. Além disso, mostramos que em Q[X] sempre e possível encontrar o grupo de Galois de qualquer polinômio f(X) 2 Q[X]. / In this text we present a Theorem which gives necessary and suficient conditions for a polynomial f(X) with rational coe cients to be soluble by real radicals, as well as some applications of this result. We also show that it is always possible to explicit the Galois group of any polynomial f(X) 2 Q[X].
|
2 |
Solubilidade de equações polinomiais por radicais reais e cálculo do grupo de galois em Q[X]Azevedo, Danielle Santos January 2012 (has links)
Neste trabalho apresentamos um teorema que explicita condições necessárias e suficientes para que um polinômio f(X) 2 Q[X] seja solúvel por radicais reais, juntamente com algumas aplicações do mesmo. Além disso, mostramos que em Q[X] sempre e possível encontrar o grupo de Galois de qualquer polinômio f(X) 2 Q[X]. / In this text we present a Theorem which gives necessary and suficient conditions for a polynomial f(X) with rational coe cients to be soluble by real radicals, as well as some applications of this result. We also show that it is always possible to explicit the Galois group of any polynomial f(X) 2 Q[X].
|
3 |
Solubilidade de equações polinomiais por radicais reais e cálculo do grupo de galois em Q[X]Azevedo, Danielle Santos January 2012 (has links)
Neste trabalho apresentamos um teorema que explicita condições necessárias e suficientes para que um polinômio f(X) 2 Q[X] seja solúvel por radicais reais, juntamente com algumas aplicações do mesmo. Além disso, mostramos que em Q[X] sempre e possível encontrar o grupo de Galois de qualquer polinômio f(X) 2 Q[X]. / In this text we present a Theorem which gives necessary and suficient conditions for a polynomial f(X) with rational coe cients to be soluble by real radicals, as well as some applications of this result. We also show that it is always possible to explicit the Galois group of any polynomial f(X) 2 Q[X].
|
4 |
Resultantes, equações polinomiais e o teorema de BezoutTura, Fernando Colman January 2006 (has links)
A presente dissertação aborda uma técnica para determinar as soluções de sistemas de equações polinomiais. Esta técnica que é puramente algébrica, interliga tópicos da Matemática, como a Geometria Algébrica e a Álgebra Computacional. Mais especificamente, estudamos a teoria de Resultantes e suas aplicações. Começamos com a motivação de encontrar as raízes comuns de dois polinômios a uma variável, em seguida é estendida para o caso mais geral de várias variáveis. Estudamos detalhadamente como obter fórmulas para o cálculo do Resultante, como por exemplo a fórmula de Macaulay e de Poisson. A técnica para resolver sistemas de equações polinomiais é então apresentada. Terminamos apresentando uma prova de um caso particular do Teorema de Bezout, como aplicação da teoria de Resultantes. Este teorema é muito importante, pois fornece um número de soluções de um sistema de equações polinomiais.
|
5 |
Resultantes, equações polinomiais e o teorema de BezoutTura, Fernando Colman January 2006 (has links)
A presente dissertação aborda uma técnica para determinar as soluções de sistemas de equações polinomiais. Esta técnica que é puramente algébrica, interliga tópicos da Matemática, como a Geometria Algébrica e a Álgebra Computacional. Mais especificamente, estudamos a teoria de Resultantes e suas aplicações. Começamos com a motivação de encontrar as raízes comuns de dois polinômios a uma variável, em seguida é estendida para o caso mais geral de várias variáveis. Estudamos detalhadamente como obter fórmulas para o cálculo do Resultante, como por exemplo a fórmula de Macaulay e de Poisson. A técnica para resolver sistemas de equações polinomiais é então apresentada. Terminamos apresentando uma prova de um caso particular do Teorema de Bezout, como aplicação da teoria de Resultantes. Este teorema é muito importante, pois fornece um número de soluções de um sistema de equações polinomiais.
|
6 |
Resultantes, equações polinomiais e o teorema de BezoutTura, Fernando Colman January 2006 (has links)
A presente dissertação aborda uma técnica para determinar as soluções de sistemas de equações polinomiais. Esta técnica que é puramente algébrica, interliga tópicos da Matemática, como a Geometria Algébrica e a Álgebra Computacional. Mais especificamente, estudamos a teoria de Resultantes e suas aplicações. Começamos com a motivação de encontrar as raízes comuns de dois polinômios a uma variável, em seguida é estendida para o caso mais geral de várias variáveis. Estudamos detalhadamente como obter fórmulas para o cálculo do Resultante, como por exemplo a fórmula de Macaulay e de Poisson. A técnica para resolver sistemas de equações polinomiais é então apresentada. Terminamos apresentando uma prova de um caso particular do Teorema de Bezout, como aplicação da teoria de Resultantes. Este teorema é muito importante, pois fornece um número de soluções de um sistema de equações polinomiais.
|
Page generated in 0.0571 seconds