• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2298
  • 850
  • 442
  • 188
  • 121
  • 84
  • 57
  • 56
  • 40
  • 40
  • 37
  • 29
  • 25
  • 24
  • 19
  • Tagged with
  • 5060
  • 994
  • 799
  • 605
  • 532
  • 500
  • 493
  • 468
  • 465
  • 434
  • 430
  • 336
  • 302
  • 301
  • 299
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
421

Modeling Rogue Waves with the Kadomtsev-Petviashvili Equation

Wanye, Randy Kanyiri Unknown Date
No description available.
422

Volume and Surface Integral Equations for Solving Forward and Inverse Scattering Problems

Cao, Xiande 01 January 2014 (has links)
In this dissertation, a hybrid volume and surface integral equation is used to solve scattering problems. It is implemented with RWG basis on the surface and the edge basis in the volume. Numerical results shows the correctness of the hybrid VSIE in inhomogeneous medium. The MLFMM method is also implemented for the new VSIEs. Further more, a synthetic apature radar imaging method is used in a 2D microwave imaging for complex objects. With the mono-static and bi-static interpolation scheme, a 2D FFT is applied for the imaging with the data simulated with VSIE method. Then we apply a background cancelling scheme to improve the imaging quality for the targets in interest. Numerical results shows the feasibility of applying the background canceling into wider applications.
423

Numerical Computations with Fundamental Solutions / Numeriska beräkningar med fundamentallösningar

Sundqvist, Per January 2005 (has links)
Two solution strategies for large, sparse, and structured algebraic systems of equations are considered. The first strategy is to construct efficient preconditioners for iterative solvers. The second is to reduce the sparse algebraic system to a smaller, dense system of equations, which are called the boundary summation equations. The proposed preconditioners perform well when applied to equations that are discretizations of linear first order partial differential equations. Analysis shows that also very simple iterative methods converge in a number of iterations that is independent of the number of unknowns, if our preconditioners are applied to certain scalar model problems. Numerical experiments indicate that this property holds also for more complicated cases, and a flow problem modeled by the nonlinear Euler equations is treated successfully. The reduction process is applicable to a large class of difference equations. There is no approximation involved in the reduction, so the solution of the original algebraic equations is determined exactly if the reduced system is solved exactly. The reduced system is well suited for iterative solution, especially if the original system of equations is a discretization of a first order differential equation. The technique is used for several problems, ranging from scalar model problems to a semi-implicit discretization of the compressible Navier-Stokes equations. Both strategies use the concept of fundamental solutions, either of differential or difference operators. An algorithm for computing fundamental solutions of difference operators is also presented.
424

Particle trajectory analysis of a two-dimensional shock tube flow

Walker, David Keith 20 March 2014 (has links)
The physical properties within the two-dimensional flow produced by the reflection of a plane shock of intermediate strength at a wedge, have been determined by analysis of the particle trajectories. The particle trajectories were obtained by high speed photography of smoke tracers within the flow. Trajectories were determined for different initial positions of the tracers relative to the wedge. The conservation of mass equation was used to determine the density at points within the flow. A knowledge of the shock configurations within the flow, together with the Rankins-Hugoniot equation, was used to determine the pressure immediately behind the incident and reflected shocks. The isentropic equation of state was used to determine the pressure after the passage of the reflected shock. The pressure determined in this manner agreed, within the limits of experimental error, with that obtained using a piezo-electric transducer. The temperature, velocity of sound, and particle velocity at points within the flow were also determined. / Graduate / 0605
425

Solving Partial Differential Equations Using Artificial Neural Networks

Rudd, Keith January 2013 (has links)
<p>This thesis presents a method for solving partial differential equations (PDEs) using articial neural networks. The method uses a constrained backpropagation (CPROP) approach for preserving prior knowledge during incremental training for solving nonlinear elliptic and parabolic PDEs adaptively, in non-stationary environments. Compared to previous methods that use penalty functions or Lagrange multipliers,</p><p>CPROP reduces the dimensionality of the optimization problem by using direct elimination, while satisfying the equality constraints associated with the boundary and initial conditions exactly, at every iteration of the algorithm. The effectiveness of this method is demonstrated through several examples, including nonlinear elliptic</p><p>and parabolic PDEs with changing parameters and non-homogeneous terms. The computational complexity analysis shows that CPROP compares favorably to existing methods of solution, and that it leads to considerable computational savings when subject to non-stationary environments.</p><p>The CPROP based approach is extended to a constrained integration (CINT) method for solving initial boundary value partial differential equations (PDEs). The CINT method combines classical Galerkin methods with CPROP in order to constrain the ANN to approximately satisfy the boundary condition at each stage of integration. The advantage of the CINT method is that it is readily applicable to PDEs in irregular domains and requires no special modification for domains with complex geometries. Furthermore, the CINT method provides a semi-analytical solution that is infinitely differentiable. The CINT method is demonstrated on two hyperbolic and one parabolic initial boundary value problems (IBVPs). These IBVPs are widely used and have known analytical solutions. When compared with Matlab's nite element (FE) method, the CINT method is shown to achieve significant improvements both in terms of computational time and accuracy. The CINT method is applied to a distributed optimal control (DOC) problem of computing optimal state and control trajectories for a multiscale dynamical system comprised of many interacting dynamical systems, or agents. A generalized reduced gradient (GRG) approach is presented in which the agent dynamics are described by a small system of stochastic dierential equations (SDEs). A set of optimality conditions is derived using calculus of variations, and used to compute the optimal macroscopic state and microscopic control laws. An indirect GRG approach is used to solve the optimality conditions numerically for large systems of agents. By assuming a parametric control law obtained from the superposition of linear basis functions, the agent control laws can be determined via set-point regulation, such</p><p>that the macroscopic behavior of the agents is optimized over time, based on multiple, interactive navigation objectives.</p><p>Lastly, the CINT method is used to identify optimal root profiles in water limited ecosystems. Knowledge of root depths and distributions is vital in order to accurately model and predict hydrological ecosystem dynamics. Therefore, there is interest in accurately predicting distributions for various vegetation types, soils, and climates. Numerical experiments were were performed that identify root profiles that maximize transpiration over a 10 year period across a transect of the Kalahari. Storm types were varied to show the dependence of the optimal profile on storm frequency and intensity. It is shown that more deeply distributed roots are optimal for regions where</p><p>storms are more intense and less frequent, and shallower roots are advantageous in regions where storms are less intense and more frequent.</p> / Dissertation
426

The Origin of Wave Blocking for a Bistable Reaction-Diffusion Equation : A General Approach

Roy, Christian 12 April 2012 (has links)
Mathematical models displaying travelling waves appear in a variety of domains. These waves are often faced with different kinds of perturbations. In some cases, these perturbations result in propagation failure, also known as wave-blocking. Wave-blocking has been studied in the case of several specific models, often with the help of numerical tools. In this thesis, we will display a technique that uses symmetry and a center manifold reduction to find a criterion which defines regions in parameter space where a wave will be blocked. We focus on waves with low velocity and small symmetry-breaking perturbations, which is where the blocking initiates; the organising center. The range of the tools used makes the technique easily generalizable to higher dimensions. In order to demonstrate this technique, we apply it to the bistable equation. This allows us to do calculations explicitly. As a result, we show that wave-blocking occurs inside a wedge originating from the organising center and derive an expression for this wedge to leading order. We verify our results with some numerical simulations.
427

Oscillation Of Second Order Matrix Equations On Time Scales

Selcuk, Aysun 01 November 2004 (has links) (PDF)
The theory of time scales is introduced by Stefan Hilger in his PhD thesis in 1998 in order to unify continuous and discrete analysis. In our thesis, by making use of the time scale calculus we study the oscillation of nonlinear matrix differential equations of second order. the first chapter is introductory in nature and contains some basic definitions and tools of the time scales calculus, while certain well-known results have been presented with regard to oscillation of the solutions of second order matrix equations and some new oscillation criteria for the same type equations have been established in the second chapter.
428

Inverse Problems For Parabolic Equations

Baysal, Arzu 01 November 2004 (has links) (PDF)
In this thesis, we study inverse problems of restoration of the unknown function in a boundary condition, where on the boundary of the domain there is a convective heat exchange with the environment. Besides the temperature of the domain, we seek either the temperature of the environment in Problem I and II, or the coefficient of external boundary heat emission in Problem III and IV. An additional information is given, which is the overdetermination condition, either on the boundary of the domain (in Problem III and IV) or on a time interval (in Problem I and II). If solution of inverse problem exists, then the temperature can be defined everywhere on the domain at all instants. The thesis consists of six chapters. In the first chapter, there is the introduction where the definition and applications of inverse problems are given and definition of the four inverse problems, that we will analyze in this thesis, are stated. In the second chapter, some definitions and theorems which we will use to obtain some conclusions about the corresponding direct problem of our four inverse problems are stated, and the conclusions about direct problem are obtained. In the third, fourth, fifth and sixth chapters we have the analysis of inverse problems I, II, III and IV, respectively.
429

Numerics of Elastic and Acoustic Wave Motion

Virta, Kristoffer January 2016 (has links)
The elastic wave equation describes the propagation of elastic disturbances produced by seismic events in the Earth or vibrations in plates and beams. The acoustic wave equation governs the propagation of sound. The description of the wave fields resulting from an initial configuration or time dependent forces is a valuable tool when gaining insight into the effects of the layering of the Earth, the propagation of earthquakes or the behavior of underwater sound. In the most general case exact solutions to both the elastic wave equation and the acoustic wave equation are impossible to construct. Numerical methods that produce approximative solutions to the underlaying equations now become valuable tools. In this thesis we construct numerical solvers for the elastic and acoustic wave equations with focus on stability, high order of accuracy, boundary conditions and geometric flexibility. The numerical solvers are used to study wave boundary interactions and effects of curved geometries. We also compare the methods that we have constructed to other methods for the simulation of elastic and acoustic wave motion.
430

Etude de la régularité des solutions faibles d’énergie infinie d’une équation de transport non locale / Study of weak infinite energy solutions for a non local transport equation

Lazar, Omar 21 February 2013 (has links)
L'objet de cette thèse est l'étude de la régularité des solutions d'énergie infinie d'une équation de transport non locale. Plus précisément, nous nous sommes intéressés à deux équations de transport dont la vitesse est donnée par un opérateur non local. La première équation est l'équation dissipative surface quasi-géostrophique (SQG) et la seconde est un modèle 1D qui peut être vu comme la version 1D de l'équation quasi-géostrophique non écrite sous forme divergence. Une autre motivation du modèle 1D est le lien qu'a cette équation avec l'équation de Birkoff-Rott modélisant l'évolution d'une poche de tourbillon. Ces deux équations ont été introduites par Constantin, Majda et Tabak pour (SQG) et par Constantin, Lax, Majda pour le modèle 1D dans le but de mieux comprendre l'étude de la régularité des solutions de l'équation d'Euler tridimensionnelle écrite en terme de la vorticité. Dans une première partie, nous nous sommes attachés à étudier l'équation quasi géostrophique (SQG) lorsque la donnée initiale est dans l'espace de Morrey-Campanato non homogène $L^{2}_{uloc}(mathbb{R}^2)$. Le manque de décroissance à l'infini du noyau de convolution de l'opérateur de Riesz ne permet pas de considérer le cas d'une donnée intiale $L^{2}_{uloc}(mathbb{R}^2)$. Cependant, en donnant plus de décroissance au noyau de l'opérateur de Riesz, ou de façon équivalente, en donnant plus d'oscillations à la donnée initiale nous rendons possible l'étude de l'équation dans des espaces de Morrey-Camapanato. Nous montrons alors un théorème d'existence globale dans le cas d'oscillations suffisamment grandes et local dans le cas de petites oscillations. Dans une seconde partie, nous nous sommes intéressés à l'étude de l'équation de transport 1D dont la vitesse est non locale. Contrairement à l'équation (SQG), l'approche Morrey-Campanato pour l'équation 1D ne marche pas aussi bien. Le caractère non locale de cette équation associé au fait qu'elle ne soit pas écrite sous forme divergence introduit de grandes difficultés. Cependant, l'étude dans les espaces à poids est possible et nous obtenons un résultat d'existence globale à condition de prendre un poids appartenant à la classe A_2 de Muckenhoupt. Enfin, nous terminons en montrant que la condition de positivité de la donnée initiale n'est pas nécessaire si l'on désire uniquement avoir un contrôle globale de solutions faibles dont l'énergie ne décroit pas. Comme cela a été remarqué dans l'article de Cordoba, Cordoba et Fontelos, la décroissance de l'énergie n'est valable que sous l'hypothèse de positivité de la donnée initiale. Ceci rejoint un résultat établi récemment par Hongjie Dong / In this thesis, we adress the study of weak infinite energy solutions for the critical dissipative quasi geostrophic (SQG) equation. We also study a 1D transport equation with non local velocity. More precisely, we consider the (SQG) equation equation with data in Morrey-Camapanto type spaces and the other equation in a weighted Lebesgue spaces. Both spaces generate infinite energy solutions. Regarding the 1D equation with non local velocity, the existence of weak Morrey solutions is not easy to obtain, this is due to the fact that the non linearity is not written in a divergence form. Nevertheless, we are able to adress the study this 1D equation in a weigted Lebesgue space and this also provides infinite energy solutions. In a first part, we show that for any initial data lying in a Morrey-Campanato space for large enough oscillations, we have global existence of weak solutions. The proof is based on the study of the truncated equation (on a ball of radius $R>0$ centered at the origin) associated with a truncated et regularized initial data (by making a convolution with a standard mollifer). We obtain emph{a priori} estimates that give rise to an energy inequality. Then, we treat the case of small oscillations, namely $0<s<1/4$. More precisely, we show that for all initial data lying in $Lambda^{s} (dot H^{s}_{uloc} (mathbb{R}^{2}))cap L^infty(mathbb{R}^{2})$ we have local existence of solutions.In a second part, we study a 1D model equation driven by a non local velocity. This equation have been considered by Cordoba, Cordoba and Fontelos in a paper where the authors show that for all positive initial data in $H^{2} (mathbb{R}^{2})$ we have global existence of weak solutions. We first make some remarks regarding the positivity condition of the initial data by showing that this condition is not necessary for keeping the global control but we actually lost the $L^2$ maximum principle and the $L^{2}$ decay at inifinity. In the second part of the chapter, we show a global existence result of weak solutions for all positive initial data belonging to the weighted Lebesgue spaces $L^{2}(w)$ where $w$ is a weight of the $mathcal{A}_{2}$ class of Muckenhoupt. The method we used may easily be extend to other active scalar equations such as the surface quasi geostrophic equation

Page generated in 0.0608 seconds