• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Interaction Patterns and Web-Structures of Resonant Solitons of the Kadomtsev-Petviashvili Equation

Tippabhotla, Anupama 08 July 2005 (has links)
In this thesis, the interaction pattern for a class of soliton solutions of the Kadomtsev- Petviashvili (KP) equation (−4ut + uxxx + 6uux )x + 3uyy = 0 is analyzed. The complete asymptotic properties of the soliton solutions for y → ±∞ are determined. The resonance characteristic of two sub-classes of the soliton solutions, in which N- incoming line solitons for y → −∞ interact to form N+ outgoing line solitons for y → ∞, is described. These two specific sub-classes of (N-,N+)-soliton solutions are the following: 1) [(2, 3), (2, 4), (2, 5)], 2) [(3, 2), (3, 3), (3, 4)]. The intermediate solitons and the interaction regions of the above soliton solutions are determined, and their various interaction patterns are explored. Maple and Mathematica are used to get the 3 dimensional plots and contour plots of the soliton solutions to show their interaction patterns. Finally, the spider-web-structures of the discussed solitons of the KP equation are displayed.
2

Modeling Rogue Waves with the Kadomtsev-Petviashvili Equation

Wanye, Randy Kanyiri Unknown Date
No description available.
3

Contrôle et stabilisation pour des équations hyperboliques et dispersives / Control and stablization of some hyperbolic and dispersive equations

Sun, Chenmin 04 July 2018 (has links)
Dans cette thèse, nous étudions la contrôlabilité et la stabilisation pour des équation hyperboliques et dispersives. La première partie de cette thèse est consacrée à la stabilisation du système de Stokes hyperbolique. La propagation des singularités pour le système de Stokes semi-classique est établie dans chapitre 1. La preuve repose sur la stratégie de Ivrii et Melrose-Sjöstrand.Cependant, par rapport à l’opérateur de Laplace, la difficulté est causée par la pression qui a un effet non trivial pour les solutions concentrées au bord. Nous utilisons la paramétrix des solutions près d’un point elliptique ou hyperbolique. Ensuite, on traite les solutions concentrées près de l’ensemble «glancing» par une décomposition micro-locale. L’effet de la pression est alors bien contrôlé grâce à la géométrie. Finalement on utilise un argument récurrence pour terminer la preuve. Par conséquent, nous prouvons la stabilisation du système de Stokes hyperbolique dans le chapitre 2 sous la condition de contrôle géométrique sur le support de l’amortissement.La deuxième partie est consacrée à la contrôlabilité et la stabilisation de l’équation de Kadomtsev-Petviashvili (KP en bref). Dans le chapitre 3, en utilisant l’analyse semi-classique, nous avons prouvé la contrôlabilité verticale pour des données dans L^2 (T). De plus, un résultat négatif concernant la contrôlabilité horizontale est aussi obtenu. Dans le chapitre 4, nous considérons la contrôlabilité de l’équation de KP-I linéaire. C’est un modèle intéressant dans lequel la vitesse de groupe peut être dégénéré. Plus général, on a obtenu le plus petit ordre requis pour assurer l’observabilité des équations de KP-I fractionnaire linéaire. Finalement dans le chapitre 5, nous avons montré la contrôlabilité et la stabilisation des ’equations de KP-II et 5KP-II avec grandes données initiales dans l’espace de Sobolev, si la donnée initiale satisfait certaines hypothèses de compacité partielles. Ceci généralise la contrôlabilité des solutions de KP-II avec données petites dans le chapitre 3. / In this thesis, we deal with the control and stabilization for certain hyperbolic and dispersive partial differential equations. The first part of this work is devoted to the stabilization of hyperbolic Stokes equation. The propagation of singularity for semi-classical Stokes system is established in Chapter 1. This will be done by adpating the strategy of Ivrii and Melrose-Sjöstrand. However,compared to the Laplace operator, the difficulty is caused by the pressure term which has non-trivial impact to solutions concentrated near the boundary. We apply parametrix construction to resolve the issue in elliptic and hyperbolic regions. We next adapte a fine micro-local decomposition for solutions concentrated near the glancing set. The impact of pressure to the solution is then well controled by geometric considerations. As a consequence of the main theorem in Chapter 1, we prove the stabilization of hyperbolic Stokes equation under geometric control condition in Chapter 2. The second part is devoted to the controllability of Kadomtsev–Petviashvili(KP in short) equations. In Chapter 3, the controllability in L 2 (T) from vertical strip is proved using semi-classical analysis. Additionally, a negative result for the controllability in L^2 (T) from horizontal strip is also showed. In Chapter 4, we prove the exact controllability of linear KP-I equation if the control input is added on a vertical domain. It is an interesting model in which the group velocity may degenerate. More generally, we have obtained the least dispersion needed to insure observability for fractional linear KP I equation. Finally in Chapter 5, we prove exact controllability and stabilization of KP-II equation and fifth order KP-II equation for any size of initial data in Sobolev spaces with additional partial compactness conditions. This extends the exact controllability for small data obtained in Chapter 3.compactness condition. This extends the exact controllability for small data obtained in Chapter 3.

Page generated in 0.0889 seconds