• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2298
  • 850
  • 442
  • 188
  • 121
  • 84
  • 57
  • 56
  • 40
  • 40
  • 37
  • 29
  • 25
  • 24
  • 19
  • Tagged with
  • 5060
  • 994
  • 799
  • 605
  • 532
  • 500
  • 493
  • 468
  • 465
  • 434
  • 430
  • 336
  • 302
  • 301
  • 299
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
481

Exact solutions for Schrodinger and Gross-Pitaevskii equations and their experimental applications.

Bhalgamiya, Bhavika 12 May 2023 (has links) (PDF)
A prescription is given to obtain some exact results for certain external potentials �� (r) of the time-independent Gross-Pitaevskii and Schrodinger equations. The study motivation is the ability to program �� (r) experimentally in cold atom Bose-Einstein condensates. Rather than derive wavefunctions that are solutions for a given �� (r), we ask which �� (r) will have a given pdf (probability density function) �� (r). Several examples in 1 dimension (1D), 2 dimensions (2D), and 3 dimensions (3D) are presented for well-known pdfs in the position space. Exact potentials with zero, one and two walls are obtained and explained in detail. Apart from position space, the method is also applicable to obtain exact solutions for the Time-independent Schr¨odinger equation (TISE) and Gross-Pitaevskii equation (GPeq) for pdfs in momentum space. For this, we derived the potentials which are generated from the pdfs of the hydrogen atom in the real space as well as in the momentum space. However, the method was also extended for the time-dependent case. The prescription is also applicable to solve time-dependent pdfs. The aim is to find the ��(r, ��) which generates the pdf ��(r, ��). As a special case, we tested our method by studying the well known case for the Gaussian wave packet in 1D with zero potential ��(��, ��) = 0.
482

Investigation of soliton equations with integral operators and their dynamics

Vikars Hall, Ruben, Svennerstedt, Carl January 2023 (has links)
We present Lax pairs and functions called Lax functions corresponding to Calogero- Moser-Sutherland (CMS) systems. We present the Benjamin-Ono (BO) equation and a pole ansatz to the BO equation, constructed from a specific type of Lax function called a special Lax function corresponding to Rational and Trigonometric CMS systems. We present a generalization of the BO equation called the non-chiral Intermediate wave (ncILW) equation and show that a family of solutions to the ncILW equation can be constructed from the special Lax function corresponding to the hyperbolic CMS system. We present the Szegö equation on the circle and the real line. We obtain a family of solutions to the Szegö equation on the real line using a pole ansatz. Using numerical methods, we display solution plots to the BO equation and Szegö equation.
483

Contributions to solve the Multi-group Neutron Transport equation with different Angular Approaches

Morato Rafet, Sergio 17 January 2021 (has links)
[ES] La forma más exacta de conocer el desplazamiento de los neutrones a través de un medio material se consigue resolviendo la Ecuación del Transporte Neutrónico. Tres diferentes aproximaciones de esta ecuación se han investigado en esta tesis: Ecuación del transporte neutrónico resuelta por el método de Ordenadas Discretas, Ecuación de la Difusión y Ecuación de Armónicos Esféricos Simplificados. Para resolver estás ecuaciones se estudian diferentes esquemas del Método de Diferencias Finitas. La solución a estas ecuaciones describe la población de neutrones y las reacciones ocasionadas dentro de un reactor nuclear. A su vez, estas variables están relacionadas con el flujo y la potencia, parámetros fundamentales para el Análisis de Seguridad Nuclear. La tesis introduce la definición de las ecuaciones mencionadas y en particular se detallan para el estado estacionario. Se plantea el Método Modal como solución a los problemas de autovalores definidos por dichas ecuaciones. Primero se desarrollan varios algoritmos para la resolución del estado estacionario de la Ecuación del Transporte de Neutrones con el Método de Ordenadas Discretas para la discretización angular y el Método de Diferencias Finitas para la discretización espacial. Se ha implementado una formulación capaz de resolver el problema de autovalores para cualquier número de grupos energéticos con upscattering y anisotropía. Varias cuadraturas utilizadas por este método en su resolución angular han sido estudiadas e implementadas para cualquier orden de aproximación de Ordenadas Discretas. Además, otra formulación se desarrolla para la solución del problema fuente de la ecuación del transporte neutrónico. A continuación, se lleva a cabo un algoritmo que permite resolver la Ecuación de la Difusión de Neutrones con dos variantes del método de diferencias Finitas, una centrada en celda y otra en vértice o nodo. Se utiliza también el Método Modal calculando cualquier número de autovalores para varios grupos de energía y con upscattering. También se implementan los dos esquemas del Método de Diferencias Finitas anteriormente mencionados en el desarrollo de diferentes algoritmos para resolver las Ecuaciones de Armónicos Esféricos Simplificados. Además, se ha realizado un análisis de diferentes aproximaciones de las condiciones de contorno. Finalmente, se han realizado cálculos de la constante de multiplicación, los modos subcríticos, el flujo neutrónico y la potencia para diferentes tipos de reactores nucleares. Estas variables resultan esenciales en Análisis de Seguridad Nuclear. Además, se han realizado diferentes estudios de sensibilidad de parámetros como tamaño de malla, orden utilizado en cuadraturas o tipo de cuadraturas. / [CA] La forma més exacta de conèixer el desplaçament dels neutrons a través d'un mitjà material s'aconsegueix resolent l'Equació del Transport Neutrònic. Tres diferents aproximacions d'esta equació s'han investigat en aquesta tesi: Equació del Transport Neutrònic resolta pel mètode d'Ordenades Discretes, Equació de la Difusió i Equació d'Ármonics Esfèrics Simplificats. Per a resoldre estes equacions s'estudien diferents esquemes del Mètode de Diferències Finites. La solució a estes equacions descriu la població de neutrons i les reaccions ocasionades dins d'un reactor nuclear. Al seu torn, estes variables estan relacionades amb el flux i la potència, paràmetres fonamentals per a l'Anàlisi de Seguretat Nuclear. La tesi introduïx la definició de les equacions mencionades i en particular es detallen per a l'estat estacionari. Es planteja el Mètode Modal com a solució als problemes d'autovalors definits per les dites equacions. Primer es desenvolupen diversos algoritmes per a la resolució de l'estat estacionari de l'Equació del Transport de Neutrons amb el Mètode d'Ordenades Discretes per a la discretiztació angular i el Mètode de Diferències Finites per a la discretització espacial. S'ha implementat una formulació capaç de resoldre el problema d'autovalors per a qualsevol nombre de grups energètics amb upscattering i anisotropia. Diverses quadratures utilitzades per este mètode en la seua resolució angular han sigut estudiades i implementades per a qualsevol orde d'aproximació d'Ordenades Discretes. A més, una altra formulació es desenvolupa per a la solució del problema font de l'Equació del Transport Neutrònic. A continuació, es du a terme un algoritme que permet resoldre l'Equació de la Difusió de Neutrons amb dos variants del mètode de Diferències Finites, una centrada en cel·la i una altra en vèrtex o node. S'utilitza també el Mètode Modal calculant qualsevol nombre d'autovalors per a diversos grups d'energia i amb upscattering. També s'implementen els dos esquemes del Mètode de Diferències Finites anteriorment mencionats en el desenvolupament de diferents algoritmes per a resoldre les Equacions d'Harmònics Esfèrics Simplificats. A més, s'ha realitzat una anàlisi de diferents aproximacions de les condicions de contorn. Finalment, s'han realitzat càlculs de la constant de multiplicació, els modes subcrítics, el flux neutrònic i la potència per a diferents tipus de reactors nuclears. Estes variables resulten essencials en Anàlisi de Seguretat Nuclear. A més, s'han realitzat diferents estudis de sensibilitat de paràmetres com la grandària de malla, orde utilitzat en quadratures o tipus de quadratures. / [EN] The most accurate way to know the movement of the neutrons through matter is achieved by solving the Neutron Transport Equation. Three different approaches to solve this equation have been investigated in this thesis: Discrete Ordinates Neutron Transport Equation, Neutron Diffusion Equation and Simplified Spherical Harmonics Equations. In order to solve the equations, different schemes of the Finite Differences Method were studied. The solution of these equations describes the population of neutrons and the occurred reactions inside a nuclear system. These variables are related with the flux and power, fundamental parameters for the Nuclear Safety Analysis. The thesis introduces the definition of the mentioned equations. In particular, they are detailed for the steady state case. The Modal Method is proposed as a solution to the eigenvalue problems determined by the equations. First, several algorithms for the solution of the steady state of the Neutron Transport Equation with the Discrete Ordinates Method for the angular discretization and Finite Difference Method for spatial discretization are developed. A formulation able to solve eigenvalue problems for any number of energy groups, with scattering and anisotropy has been developed. Several quadratures used by this method for the angular discretization have been studied and implemented for any order of approach of the discrete ordinates. Furthermore, an adapted formulation has been developed as a solution of the source problem for the Neutron Transport Equation. Next, an algorithm is carried out that allows to solve the Neutron Diffusion Equation with two variants of the Finite Difference Method, one with cell centered scheme and another edge entered. The Modal method is also used for calculating any number of eigenvalues for several energy groups and upscattering. Both Finite Difference schemes mentioned before are also implemented to solve the Simplified Spherical Harmonics Equations. Moreover, an analysis of different approaches of the boundary conditions is performed. Finally, calculations of the multiplication factor, subcritical modes, neutron flux and the power for different nuclear reactors were carried out. These variables result essential in Nuclear Safety Analysis. In addition, several sensitivity studies of parameters like mesh size, quadrature order or quadrature type were performed. / Me gustaría dar las gracias al Ministerio de Economía, Industria y Competitividad y a la Agencia Estatal de Investigación de España por la concesión de mi contrato predoctoral de formación de personal investigador con referencia BES-2016-076782. La ayuda económica proporcionada por este contrato fue esencial para el desarrollo de esta tesis, así como para el financiamiento de una estancia. / Morato Rafet, S. (2020). Contributions to solve the Multi-group Neutron Transport equation with different Angular Approaches [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/159271
484

Rayleigh-Bénard convection: bounds on the Nusselt number / Rayleigh-Bénard Konvektion: Schranken an die Nusselt-Zahl

Nobili, Camilla 28 April 2016 (has links) (PDF)
We examine the Rayleigh–Bénard convection as modelled by the Boussinesq equation. Our aim is at deriving bounds for the heat enhancement factor in the vertical direction, the Nusselt number, which reproduce physical scalings. In the first part of the dissertation, we examine the the simpler model when the acceleration of the fluid is neglected (Pr=∞) and prove the non-optimality of the temperature background field method by showing a lower bound for the Nusselt number associated to it. In the second part we consider the full model (Pr<∞) and we prove a new upper bound which improve the existing ones (for large Pr numbers) and catches a transition at Pr~Ra^(1/3).
485

Web-based e-government services acceptance for G2C : a structural equation modelling approach

Alzahrani, Ahmed Ibrahim January 2011 (has links)
E-Government is the use of information technology particularly web applications to deliver convenient services for citizens, business and government. Governments worldwide spend billions of their budgets in order to deliver convenient electronic services to their citizens. There are two important points; government offers online services, and citizens consume these services. In order to maximize the benefits of these projects and to avoid possible failures, the gap between these points should be addressed. Yet there are few empirical studies that have covered the relevant issues of adoption from the citizen perspective in developing countries. This research study investigates citizens’ acceptance of e-government services in the context of Saudi Arabia. It posits an integrated model of the key elements that influence citizens’ adoption of e-government. The framework includes a combination of attitudinal, social, control and trust factors as well as the influence of gender. The model is validated by surveying 533 citizens and utilising the structural equation modeling technique for data analysis. Findings show that both measurement and structural models exhibit good model fit to data. The study shows that all constructs satisfy the criteria of constructs reliability and convergent and discriminant validity. The paths estimations show that of the sixteen designed casual relationships, eleven paths relationships were found to be significant while the other five paths remained unsupported.
486

Computational aspects of spectral invariants

Bironneau, Michael January 2014 (has links)
The spectral theory of the Laplace operator has long been studied in connection with physics. It appears in the wave equation, the heat equation, Schroedinger's equation and in the expression of quantum effects such as the Casimir force. The Casimir effect can be studied in terms of spectral invariants computed entirely from the spectrum of the Laplace operator. It is these spectral invariants and their computation that are the object of study in the present work. The objective of this thesis is to present a computational framework for the spectral zeta function $\zeta(s)$ and its derivative on a Euclidean domain in $\mathbb{R}^2$, with rigorous theoretical error bounds when this domain is polygonal. To obtain error bounds that remain practical in applications an improvement to existing heat trace estimates is necessary. Our main result is an original estimate and proof of a heat trace estimate for polygons that improves the one of van den Berg and Srisatkunarajah, using finite propagation speed of the corresponding wave kernel. We then use this heat trace estimate to obtain a rigorous error bound for $\zeta(s)$ computations. We will provide numerous examples of our computational framework being used to calculate $\zeta(s)$ for a variety of situations involving a polygonal domain, including examples involving cutouts and extrusions that are interesting in applications. Our second result is the development a new eigenvalue solver for a planar polygonal domain using a partition of unity decomposition technique. Its advantages include multiple precision and ease of use, as well as reduced complexity compared to Finite Elemement Method. While we hoped that it would be able to contend with existing packages in terms of speed, our implementation was many times slower than MPSPack when dealing with the same problem (obtaining the first 5 digits of the principal eigenvalue of the regular unit hexagon). Finally, we present a collection of numerical examples where we compute the spectral determinant and Casimir energy of various polygonal domains. We also use our numerical tools to investigate extremal properties of these spectral invariants. For example, we consider a square with a small square cut out of the interior, which is allowed to rotate freely about its center.
487

Pseudo-Newtonian simulations of black hole-neutron star mergers as possible progenitors of short-duration gamma-ray bursts

Sriskantha, Hari Haran January 2014 (has links)
Black hole-neutron star (BH-NS) mergers are promising candidates for the progenitors of short-duration gamma-ray bursts (GRBs). With the right initial conditions, the neutron star becomes tidally disrupted, eventually forming a dense, accreting disk around the black hole. The thermal energy of this black hole-disk system can be extracted via neutrino processes, while the spin energy of the black hole can be extracted via magnetic processes. Either (or even a combination of these) processes could feasibly power a relativistic jet with energy ≥~ 10 49 erg and duration ≤~ 2 s, hence producing a short-duration GRB. In this thesis, we investigate BH-NS mergers with three-dimensional, pseudo-Newtonian simulations. We use the simulation code Charybdis, which uses a dimensionally-split, reconstruct-solve-average scheme (i.e. using Riemann solvers) to solve the Euler equations of hydrodynamics. Although the code is based on a Newtonian framework, it includes pseudo- Newtonian approximations of local gravitational wave effects and the innermost stable circular orbit of the BH, which are both general relativistic phenomena. The code also includes the effects of global neutrino emission, shear viscosity and self-gravity. This thesis comprises two main projects. The first project is a parameter study of the equation of state, which encapsulates the relationship between the pressure of a fluid and its other thermodynamic properties. Although the EOS is well understood at low densities, it is yet to be constrained at supranuclear densities, and so must be treated as a parameter in numerical studies of BH-NS mergers. We present simulations using three existing EOSs, in order to investigate their effect on the merger dynamics. We find that the EOS strongly influences the fate of the NS, the properties of the accretion disk, and the neutrino emission. In the second project, we begin upgrading Charybdis to include magnetic field effects, in order to investigate the magnetic processes described above. We implement existing reconstruction and Riemann solver algorithms for the equations of magnetohydrodynamics, and present 1D tests to compare them. When modelling magnetic fields in more than one dimension, we must also deal with the divergence-free condition, ∇. B = 0. We develop a new constrained transport algorithm to ensure our code maintains this condition, and present 2D tests to confirm its accuracy. This algorithm has many advantages over existing ones, including easier implementation, greater computational efficiency and better parallelisation. Finally, we present preliminary tests that use these algorithms in simulations of BH-NS mergers.
488

Inverse modelling and optimisation in numerical groundwater flow models using proportional orthogonal decomposition

Wise, John Nathaniel 03 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: Numerical simulations are widely used for predicting and optimising the exploitation of aquifers. They are also used to determine certain physical parameters, for example soil conductivity, by inverse calculations, where the model parameters are changed until the model results correspond optimally to measurements taken on site. The Richards’ equation describes the movement of an unsaturated fluid through porous media, and is characterised as a non-linear partial differential equation. The equation is subject to a number of parameters and is typically computationally expensive to solve. To determine the parameters in the Richards’ equation, inverse modelling studies often need to be undertaken. In these studies, the parameters of a numerical model are varied until the numerical response matches a measured response. Inverse modelling studies typically require 100’s of simulations, which implies that parameter optimisation in unsaturated case studies is common only in small or 1D problems in the literature. As a solution to overcome the computational expense incurred in inverse modelling, the use of Proper Orthogonal Decomposition (POD) as a Reduced Order Modelling (ROM) method is proposed in this thesis to speed-up individual simulations. An explanation of the Finite Element Method (FEM) is given using the Galerkin method, followed by a detailed explanation of the Galerkin POD approach. In the development of the Galerkin POD approach, the method of reducing matrices and vectors is shown, and the treatment of Neumann and Dirichlet boundary values is explained. The Galerkin POD method is applied to two case studies. The first case study is the Kogelberg site in the Table Mountain Group near Cape Town in South Africa. The response of the site is modelled at one well over the period of 2 years, and is assumed to be governed by saturated flow, making it a linear problem. The site is modelled as a 3D transient, homogeneous site, using 15 layers and ≈ 20000 nodes, using the FEM implemented on the open-source software FreeFem++. The model takes the evapotranspiration of the fynbos vegetation at the site into consideration, allowing the calculation of annual recharge into the aquifer. The ROM is created from high-fidelity responses taken over time at different parameter points, and speed-up times of ≈ 500 are achieved, corresponding to speed-up times found in the literature for linear problems. The purpose of the saturated groundwater model is to demonstrate that a POD-based ROM can approximate the full model response over the entire parameter domain, highlighting the excellent interpolation qualities and speed-up times of the Galerkin POD approach, when applied to linear problems. A second case study is undertaken on a synthetic unsaturated case study, using the Richards’ equation to describe the water movement. The model is a 2D transient model consisting of ≈ 5000 nodes, and is also created using FreeFem++. The Galerkin POD method is applied to the case study in order to replicate the high-fidelity response. This did not yield in any speed-up times, since the full matrices of non-linear problems need to be recreated at each time step in the transient simulation. Subsequently, a method is proposed in this thesis that adapts the Galerkin POD method by linearising the non-linear terms in the Richards’ equation, in a method named the Linearised Galerkin POD (LGP) method. This method is applied to the same 2D synthetic problem, and results in speed-up times in the range of 10 to 100. The adaptation, notably, does not use any interpolation techniques, favouring a code intrusive, but physics-based, approach. While the use of an intrusively linearised POD approach adds to the complexity of the ROM, it avoids the problem of finding kernel parameters typically present in interpolative POD approaches. Furthermore, the interpolation and possible extrapolation properties inherent to intrusive POD-based ROM’s are explored. The good extrapolation properties, within predetermined bounds, of intrusive POD’s allows for the development of an optimisation approach requiring a very small Design of Experiments (DOE) sets (e.g. with improved Latin Hypercube sampling). The optimisation method creates locally accurate models within the parameter space using Support Vector Classification (SVC). The region inside of the parameter space in which the optimiser is allowed to move is called the confidence region. This confidence region is chosen as the parameter region in which the ROM meets certain accuracy conditions. With the proposed optimisation technique, advantage is taken of the good extrapolation characteristics of the intrusive POD-based ROM’s. A further advantage of this optimisation approach is that the ROM is built on a set of high-fidelity responses obtained prior to the inverse modelling study, avoiding the need for full simulations during the inverse modelling study. In the methodologies and case studies presented in this thesis, initially infeasible inverse modelling problems are made possible by the use of the POD-based ROM’s. The speed up times and extrapolation properties of POD-based ROM’s are also shown to be favourable. In this research, the use of POD as a groundwater management tool for saturated and unsaturated sites is evident, and allows for the quick evaluation of different scenarios that would otherwise not be possible. It is proposed that a form of POD be implemented in conventional groundwater software to significantly reduce the time required for inverse modelling studies, thereby allowing for more effective groundwater management. / AFRIKAANSE OPSOMMING: Die Richards vergelyking beskryf die beweging van ’n vloeistof deur ’n onversadigde poreuse media, en word gekenmerk as ’n nie-lineêre parsiële differensiaalvergelyking. Die vergelyking is onderhewig aan ’n aantal parameters en is tipies berekeningsintensief om op te los. Om die parameters in die Richards vergelyking te bepaal, moet parameter optimering studies dikwels onderneem word. In hierdie studies, word die parameters van ’n numeriese model verander totdat die numeriese resultate die gemete resultate pas. Parameter optimering studies vereis in die orde van honderde simulasies, wat beteken dat studies wat gebruik maak van die Richards vergelyking net algemeen is in 1D probleme in die literatuur. As ’n oplossing vir die berekingskoste wat vereis word in parameter optimering studies, is die gebruik van Eie Ortogonale Ontbinding (POD) as ’n Verminderde Orde Model (ROM) in hierdie tesis voorgestel om individuele simulasies te versnel in die optimering konteks. Die Galerkin POD benadering is aanvanklik ondersoek en toegepas op die Richards vergelyking, en daarna is die tegniek getoets op verskeie gevallestudies. Die Galerkin POD metode word gedemonstreer op ’n hipotetiese gevallestudie waarin water beweging deur die Richards-vergelyking beskryf word. As gevolg van die nie-lineêre aard van die Richards vergelyking, het die Galerkin POD metode nie gelei tot beduidende vermindering in die berekeningskoste per simulasie nie. ’n Verdere gevallestudie word gedoen op ’n ware grootskaalse terrein in die Tafelberg Groep naby Kaapstad, Suid-Afrika, waar die grondwater beweging as versadig beskou word. Weens die lineêre aard van die vergelyking wat die beweging van versadigde water beskryf, is merkwaardige versnellings van > 500 in die ROM waargeneem in hierdie gevallestudie. Daarna was die die Galerkin POD metode aangepas deur die nie-lineêre terme in die Richards vergelyking te lineariseer. Die tegniek word die geLineariserde Galerkin POD (LGP) tegniek genoem. Die aanpassing het goeie resultate getoon, met versnellings groter as 50 keer wanneer die ROM met die oorspronklike simulasie vergelyk word. Al maak die tegniek gebruik van verder lineariseering, is die metode nogsteeds ’n fisika-gebaseerde benadering, en maak nie gebruik van interpolasie tegnieke nie. Die gebruik van ’n fisika-gebaseerde POD benaderings dra by tot die kompleksiteit van ’n volledige numeriese model, maar die kompleksiteit is geregverdig deur die merkwaardige versnellings in parameter optimerings studies. Verder word die interpolasie eienskappe, en moontlike ekstrapolasie eienskappe, inherent aan fisika-gebaseerde POD ROM tegnieke ondersoek in die navorsing. In die navorsing word ’n tegniek voorgestel waarin hierdie inherente eienskappe gebruik word om plaaslik akkurate modelle binne die parameter ruimte te skep. Die voorgestelde tegniek maak gebruik van ondersteunende vektor klassifikasie. Die grense van die plaaslik akkurate model word ’n vertrouens gebeid genoem. Hierdie vertrouens gebied is gekies as die parameter ruimte waarin die ROM voldoen aan vooraf uitgekiesde akkuraatheidsvereistes. Die optimeeringsbenadering vermy ook die uitvoer van volledige simulasies tydens die parameter optimering, deur gebruik te maak van ’n ROM wat gebaseer is op die resultate van ’n stel volledige simulasies, voordat die parameter optimering studie gedoen word. Die volledige simulasies word tipies uitgevoer op parameter punte wat gekies word deur ’n proses wat genoem word die ontwerp van eksperimente. Verdere hipotetiese grondwater gevallestudies is onderneem om die LGP en die plaaslik akkurate tegnieke te toets. In hierdie gevallestudies is die grondwater beweging weereens beskryf deur die Richards vergelyking. In die gevalle studie word komplekse en tyd-rowende modellerings probleme vervang deur ’n POD gebaseerde ROM, waarin individuele simulasies merkwaardig vinniger is. Die spoed en interpolasie/ekstrapolasie eienskappe blyk baie gunstig te wees. In hierdie navorsing is die gebruik van verminderde orde modelle as ’n grondwaterbestuursinstrument duidelik getoon, waarin voorsiening geskep word vir die vinnige evaluering van verskillende modellering situasies, wat andersins nie moontlik is nie. Daar word voorgestel dat ’n vorm van POD in konvensionele grondwater sagteware geïmplementeer word om aansienlike versnellings in parameter studies moontlik te maak, wat na meer effektiewe bestuur van grondwater sal lei.
489

Schrödinger equation with periodic potentials

Mugassabi, Souad January 2010 (has links)
The Schrödinger equation ... is considered. The solution of this equation is reduced to the problem of finding the eigenvectors of an infinite matrix. The infinite matrix is truncated to a finite matrix. The approximation due to the truncation is carefully studied. The band structure of the eigenvalues is shown. The eigenvectors of the multiwells potential are presented. The solutions of Schrödinger equation are calculated. The results are very sensitive to the value of the parameter y. Localized solutions, in the case that the energy is slightly greater than the maximum value of the potential, are presented. Wigner and Weyl functions, corresponding to the solutions of Schrödinger equation, are also studied. It is also shown that they are very sensitive to the value of the parameter y.
490

A numerical study of coupled nonlinear Schrödinger equations arising in hydrodynamics and optics

Tsang, Suk-chong., 曾淑莊. January 2003 (has links)
published_or_final_version / abstract / toc / Mechanical Engineering / Master / Master of Philosophy

Page generated in 0.1945 seconds