• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2298
  • 850
  • 442
  • 188
  • 121
  • 84
  • 57
  • 56
  • 40
  • 40
  • 37
  • 29
  • 25
  • 24
  • 19
  • Tagged with
  • 5060
  • 994
  • 799
  • 605
  • 532
  • 500
  • 493
  • 468
  • 465
  • 434
  • 430
  • 336
  • 302
  • 301
  • 299
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
651

Doubly warped products

Unal, Bulent, January 2000 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2000. / Typescript. Vita. Includes bibliographical references (leaves 129-131). Also available on the Internet.
652

Solitons in Bose-Einstein condensates /

Carr, Lincoln D. January 2001 (has links)
Thesis (Ph. D.)--University of Washington, 2001. / Includes bibliographical references (leaves 156-168).
653

The viscosity of fiber suspensions

Blakeney, William Roy, January 1965 (has links) (PDF)
Thesis (Ph. D.)--Institute of Paper Chemistry, 1965. / Includes bibliographical references (p. 107-109).
654

Optimal Solutions Of Fuzzy Relation Equations / Optimal Solutions av Fuzzy samband ekvationer

Ahmed, Uzair, Saqib, Muhammad January 2010 (has links)
Fuzzy relation equations are becoming extremely important in order to investigate the optimal solution of the inverse problem even though there is a restrictive condition for the availability of the solution of such inverse problems. We discussed the methods for finding the optimal (maximum and minimum) solution of inverse problem of fuzzy relation equation of the form $R \circ Q = T$ where for both cases R and Q are kept unknown interchangeably using different operators (e.g. alpha, sigma etc.). The aim of this study is to make an in-depth finding of best project among the host of projects, depending upon different factors (e.g. capital cost, risk management etc.) in the field of civil engineering. On the way to accomplish this aim, two linguistic variables are introduced to deal with the uncertainty factor which appears in civil engineering problems. Alpha-composition is used to compute the solution of fuzzy relation equation. Then the evaluation of the projects is orchestrated by defuzzifying the obtained results. The importance of adhering to such synopsis, in the field of civil engineering, is demonstrated by an example.
655

Predicting Tablet Computer Use: An Extended Technology Acceptance Model

Ducey, Adam J. 01 January 2013 (has links)
While information technology has rapidly changed work in the United States in the past 50 years, some businesses and industries have been slow to adopt new technologies. Healthcare is one industry that has lagged behind in information technology investment for a variety of reasons. Recent federal initiatives to encourage IT adoption in the healthcare industry provide an ideal context to study factors that influence technology acceptance. Data from 261 practicing pediatricians were collected to evaluate an extended Technology Acceptance Model. Results indicated that individual (i.e., perceived usefulness, perceived ease of use), organizational (i.e., subjective norm), and device (i.e., compatibility, reliability) characteristics collectively influence pediatricians' intention to adopt tablet computers in their medical practice. Theoretical and practical implications are discussed. Future research should examine additional variables that influence information technology adoption in organizations.
656

Quantum dynamics on adaptive grids : the moving boundary truncation method

Pettey, Lucas Richard, 1974- 11 October 2012 (has links)
A novel method for integrating the time-dependent Schrödinger equation is presented. The moving boundary truncation (MBT) method is a time-dependent adaptive method that can significantly reduce the number of grid points needed to perform accurate wave packet propagation while maintaining stability. Hydrodynamic quantum trajectories are used to adaptively define the boundaries and boundary conditions of a fixed grid. The result is a significant reduction in the number of grid points needed to perform accurate calculations. A variety of model potential energy surfaces are used to evaluate the method. Excellent agreement with fixed boundary grids was obtained for each example. By moving only the boundary points, stability was increased to the level of the full fixed grid. Variations of the MBT method are developed which allow it to be applied to any potential energy surface and used with any propagation method. A variation of MBT is applied to the collinear H+H₂ reaction (using a LEPS potential) to demonstrate the stability and accuracy. Reaction probabilities are calculated for the three dimensional non-rotating O(³P)+H₂ and O(³P)+HD reactions to demonstrate that the MBT can be used with a variety of numerical propagation techniques. / text
657

A structural equation modeling analysis on solvency, operation and profitability of life insurers

Zhu, Shuangshuang 05 December 2013 (has links)
The abilities of life insurers can be divided and measured from various aspects. Through the use of structural equation modeling, we investigate the relations among solvency, operation ability and profitability in year 1994, 1995 and 1996. After within-year analysis and longitudinal data analysis, we found that operation ability has a positive influence on the size and income of life insurers and has a slight negative effect on the return on capital during these years. While the effect of solvency, asset risk and product risk on return on capital is not significant. / text
658

Seismic imaging and velocity model building with the linearized eikonal equation and upwind finite-differences

Li, Siwei, 1987- 03 July 2014 (has links)
Ray theory plays an important role in seismic imaging and velocity model building. Although rays are the high-frequency asymptotic solutions of the wave equation and therefore do not usually capture all details of the wave physics, they provide a convenient and effective tool for a wide range of geophysical applications. Especially, ray theory gives rise to traveltimes. Even though wave-based methods for imaging and model building had attracted significant attentions in recent years, traveltime-based methods are still indispensable and should be further developed for improved accuracy and efficiency. Moreover, there are possibilities for new ray theoretical methods that might address the difficulties faced by conventional traveltime-based approaches. My thesis consists of mainly four parts. In the first part, starting from the linearized eikonal equation, I derive and implement a set of linear operators by upwind finite differences. These operators are not only consistent with fast-marching eikonal solver that I use for traveltime computation but also computationally efficient. They are fundamental elements in the numerical implementations of my other works. Next, I investigate feasibility of using the double-square-root eikonal equation for near surface first-break traveltime tomography. Compared with traditional eikonal-based approach, where the gradient in its adjoint-state tomography neglects information along the shot dimension, my method handles all shots together. I show that the double-square-root eikonal equation can be solved efficiently by a causal discretization scheme. The associated adjoint-state tomography is then realized by linearization and upwind finite-differences. My implementation does not need adjoint state as an intermediate parameter for the gradient and therefore the overall cost for one linearization update is relatively inexpensive. Numerical examples demonstrate stable and fast convergence of the proposed method. Then, I develop a strategy for compressing traveltime tables in Kirchhoff depth migration. The method is based on differentiating the eikonal equation in the source position, which can be easily implemented along with the fast-marching method. The resulting eikonal-based traveltime source-derivative relies on solving a version of the linearized eikonal equation, which is carried out by the upwind finite-differences operator. The source-derivative enables an accurate Hermite interpolation. I also show how the method can be straightforwardly integrated in anti-aliasing and Kirchhoff redatuming. Finally, I revisit the classical problem of time-to-depth conversion. In the presence of lateral velocity variations, the conversion requires recovering geometrical spreading of the image rays. I recast the governing ill-posed problem in an optimization framework and solve it iteratively. Several upwind finite-differences linear operators are combined to implement the algorithm. The major advantage of my optimization-based time-to-depth conversion is its numerical stability. Synthetic and field data examples demonstrate practical applicability of the new approach. / text
659

Dynamics of waves and patterns of the complex Ginburg Landau and soliton management models: localized gain andeffects of inhomogeneity

Tsang, Cheng-hou, Alan., 曾正豪. January 2011 (has links)
published_or_final_version / Mechanical Engineering / Master / Master of Philosophy
660

Leading edge vortex modeling and its effect on propulsor performance

Tian, Ye, active 21st century 09 February 2015 (has links)
A novel numerical method solves the VIScous Vorticity Equation (VISVE) in 3D in order to model the Leading Edge Vortex (LEV) of propellers is proposed and implemented in this dissertation. The spatial concentration of the vorticity is exploited in the method, which is designed to be spatially compact and numerically efficient, in the meantime, capable of modeling complicated vorticity/solid boundary interaction in 2D and 3D. The numerical model can work as a viscous correction on top of the traditional Boundary Element Method (BEM) results. The proposed method is first applied in the case of a 2D hydrofoil at high angle of attack. The results are correlated with those from Navier-Stokes (N-S) simulation. The method is then used to model the LEV and tip vortex of a 3D swept wing. The results of the 3D simulation show great similarity to those from N-S. In the end, the method is applied in the case of propellers at low advance ratios. All the essential flow characteristics (LEV and tip vortex) are predicted. The objective of this dissertation is not developing a mathematically equivalent numerical method to the full-blown Reynolds-Averaged Navier-Stokes (RANS) solver, but inventing an accurate and computationally efficient tool to model the effects of the LEV on the propeller performance for engineering's purpose. / text

Page generated in 0.2756 seconds