• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2298
  • 850
  • 442
  • 188
  • 121
  • 84
  • 57
  • 56
  • 40
  • 40
  • 37
  • 29
  • 25
  • 24
  • 19
  • Tagged with
  • 5060
  • 994
  • 799
  • 605
  • 532
  • 500
  • 493
  • 468
  • 465
  • 434
  • 430
  • 336
  • 302
  • 301
  • 299
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
701

Numerical simulation of the Dynamic Beam Equation using the SBP-SAT method

Stiernström, Vidar January 2014 (has links)
A stable boundary treatment of the dynamic beam equation (DBE) with two different sets of boundary conditions has been conducted using the summation-by-parts-simultaneous-approximation-term (SBP-SAT) method. As the DBE involves a fourth derivative in space the numerical boundary treatment is highly non-trivial. Using SBP-SAT operators together with suitable time integration schemes the DBE has been simulated and a convergence study has been made. The results show that the SBP-SAT method produces a stable discretistation that is accurate enough to capture the dispersive nature of the dynamic beam equation. In additions simulations were made presenting the importance of a stable boundary treatment showing that the numerical solutions diverge when the boundaries were not handled correctly.
702

Dirac generalized function : an alternative to the change of variable technique

Lopa, Samia H. January 2000 (has links)
Finding the distribution of a statistic is always an important problem that we face in statistical inference. Methods that are usually used for solving this problem are change of variable technique, distribution function technique and moment generating function technique. Among these methods change of variable technique is the most commonly used one. This method is simple when the statistic is a one-to-one transformation of the sample observations and if it is many-to-one, then one needs to compute the jacobian for each partition of the range for which the transformation is one-to-one. In addition, if we want to find the distribution of a statistic involving n random variables using the change of variable technique, we have to define (n-1) auxiliary variables. Unless these (n-1) auxiliary variables are carefully chosen, calculation of jacobian as well as finding the range of integration to obtain the marginal distribution of the statistic of interest become complicated. [See [3]]Au, Chi and Tam, Judy [1] proposed an alternative method of finding the distribution of a statistic by using Dirac generalized function. In this study we considera number of problems involving different probability distributions that are not quiet easy to solve by change of variable technique. We will illustrate the method by solving problems which include finding the distributions of sums, products, differences and ratios of random variables. The main purpose of the thesis is to show that using Dirac generalized function one can solve these problems with more ease. This alternative approach would be more suitable for students with limited mathematical background. / Department of Mathematical Sciences
703

Development and Validation of a Partially Coupled Two-equation Soot Model for Industrial Applications

Khalilian, Kaveh 29 November 2013 (has links)
There are several reasons for reducing particulate formation as a result of combustion processes and to date, a number of approaches have been proposed to numerically predict soot. There is a trade-off between accuracy and computational cost and processing time. Two equation semi-empirical models have been used, with some success, to reconcile the need for fast solution turn around and accuracy. However, these models do not account for the mass balance between the gas phase and soot. In this study, the effects of mass conservation of the soot precursors in the gas phase were investigated in an ethylene-air laminar flame simulation at atmospheric pressure. Soot formation was predicted with a two-equation model. Then the model was modified for predicting soot in a turbulent ethylene-air flame operating at 1 atm. The new model is a [2+1]-equation model which accounts for the mass conservation of soot precursors.
704

Control of Hysteresis in the Landau-Lifshitz Equation

Chow, Amenda January 2013 (has links)
There are two main tools for determining the stability of nonlinear partial differential equations (PDEs): Lyapunov Theory and linearization. The former has the advantage of providing stability results for nonlinear equations directly, while the latter considers the stability of linear equations and then further justification is needed to show the linear stability implies local stability of the nonlinear equation. Linearization has the advantage of investigating stability on a simpler equation; however, the justification can be difficult to prove. Both Lyapunov Theory and linearization are applied to the Landau--Lifshitz equation, a nonlinear PDE that describes the behaviour of magnetization inside a magnetic object. It is known that the Landau-Lifshitz equation has an infinite number of stable equilibrium points. We present a control that forces the system from one equilibrium to another. This is proved using Lyapunov Theory. The linear Landau--Lifshitz equation is also investigated because it provides insight to the nonlinear equation. The linear model is shown to be well--posed and its eigenvalue problem is solved. The resulting eigenvalues suggest an appropriate control for the nonlinear Landau--Lifshitz equation. Mathematically, the control causes the initial equilibrium to no longer be an equilibrium and the second point to be an asymptotically stable equilibrium point. This implies the magnetization has moved to the second equilibrium and hence the control objective is successfully achieved. The existence of multiple stable equilibria is closely related to hysteresis. This is a phenomenon that is often characterized by a looping behaviour; however, the existence of a loop is not sufficient to identify hysteretic systems. A more precise definition is required, which is presented, and applied to the Landau--Lifshitz equation (both linear and nonlinear) to establish the presence of hysteresis.
705

Electronic Structure and Optical Properties of Solar Energy Materials

Wang, Baochang January 2014 (has links)
In this thesis, we have studied the electronic and optical properties of solar energy m-terials. The studies are performed in the framework of density functional theory (DFT), GW, Bethe-Salpeter equation (BSE) approaches and Kinetic Monte Carlo (KMC). We present four sets of results. In the first part, we report our results on the band gap engineering issues for BiNbO4and NaTaO3, both of which are good photocatalysts. The band gap tuning is required for these materials in order to achieve the maximum solar to hydrogen conversion efficiency. The most common method for the band gap reduction is an introduction of foreign elements. The mono-doping in the system generates electrons or holes states near band edges, which reduce the efficiency of photocatalytic process. Co-doping with anion and cation or anion and anion can provide a clean band gap. We have shown that further band gap reduction can be achieved by double-hole mediated coupling between two anionic dopants. In the second part, the structure and optical properties of (CdSxSe1x)42nanoclusters have been studied. Within this study, the structures of the (CdS)42, (CdSe)42, Cd42Se32S10, Cd42Se22S20, and Cd42Se10S32 clusters have been determined using the simulated annealing method. Factors influencing the band gap value have been analyzed. We show that the gap is most significantly reduced when strongly under coordinated atoms are present on the surface of the nanoclusters. In addition, the band gap depends on the S concentration as well as on the distribution of the S and Se atoms in the clusters. We present the optical absorption spectra calculated with BSE and random phase approximation (RPA) methods based on the GW corrected quasiparticle energies. In the third part, we have employed the state-of-art computational methods to investigate the electronic structure and optical properties of TiO2high pressure polymorphs. GW and BSE methods have been used in these calculations. Our calculations suggest that the band gap of fluorite and pyrite phases have optimal values for the photocatalytic process of decomposing water in the visible light range. In the fourth part we have built a kinetic model of the first water monolayer growth on TiO2(110) using the kinetic Monte Carlo (KMC) method based on parameters describing water diffusion and dissociation obtained from first principle calculations. Our simulations reproduce the experimental trends and rationalize these observations in terms of a competition between different elementary processes. At high temperatures our simulation shows that the structure is well equilibrated, while at lower temperatures adsorbed water molecules are trapped in hydrogen-bonded chains around pairs of hydroxyl groups, causing the observed higher number of molecularly adsorbed species at lower temperature. / <p>QC 20140603</p>
706

Health related quality of life over one year post stroke: identifying response shift susceptible constructs

Barclay-Goddard, Ruth 11 September 2008 (has links)
Problem: Many individuals with chronic illnesses such as stroke and ongoing activity limitations report self-perceived health related quality of life (HRQL) that is similar to that of healthy individuals. This phenomenon is termed response shift (RS). RS describes how people change: internal standards in assessing HRQL (recalibration), values (reprioritization), or how they define HRQL (reconceptualization), after an event such as stroke. Changes in HRQL post stroke may be inaccurate if RS is not taken into account. Increased knowledge of RS may affect the way in which HRQL measures are used, both clinically and in research. The overall objective was to assess RS in construct specific HRQL models post stroke: physical function, mental health, and participation. Methods: Data were analysed from the longitudinal study “Understanding Quality of Life Post-Stroke: A Study of Individuals and their Caregivers”. Six-hundred and seventy- eight persons with stroke at 1, 3, 6, and 12 months post stroke participated. Generic and stroke specific HRQL measures were collected. Descriptive analysis was completed with SAS, and identification of RS utilized structural equation modeling with LISREL. Results: Mean age of participants was 67 years (SD 14.8), and 45% were female. RS was identified in mental health using a framework which was developed for identifying RS statistically with multiple time points. RS was also identified in physical function where it had not been expected, possibly due to the self perceived nature of the response options. The effect size of change in physical function was affected by the presence of RS. The timing of RS in mental health and physical function was primarily around the 12 month time period, and predominantly recalibration RS. RS was also identified in participation. Conclusions: The framework that was developed was useful in identifying RS and incorporated important issues such as multiple testing and validation of the model. The presence of RS affects measurement of HRQL constructs post stroke; recalibration RS can be measured clinically with specific methods to account for RS. RS should also be measured in research studies to ensure accurate measurement of change. Future research should evaluate additional models in stroke and other populations.
707

Traveling Wave Solutions of Integro-differential Equations of One-dimensional Neuronal Networks

Hao, Han 14 June 2013 (has links)
Traveling wave solutions of integro-differential equations for modeling one-dimensional neuronal networks, are studied. Under moderate continuity assumptions, necessary and sufficient conditions for the existence and uniqueness of monotone increasing (decreasing) traveling wave solutions are established. Some faults in previous studies are corrected.
708

3D facial data fitting using the biharmonic equation.

Ugail, Hassan January 2006 (has links)
This paper discusses how a boundary-based surface fitting approach can be utilised to smoothly reconstruct a given human face where the scan data corresponding to the face is provided. In particular, the paper discusses how a solution to the Biharmonic equation can be used to set up the corresponding boundary value problem. We show how a compact explicit solution method can be utilised for efficiently solving the chosen Biharmonic equation. Thus, given the raw scan data of a 3D face, we extract a series of profile curves from the data which can then be utilised as boundary conditions to solve the Biharmonic equation. The resulting solution provides us a continuous single surface patch describing the original face.
709

Vlasov's Equation on a Great Circle and the Landau Damping Phenomenon

Shen, Shengyi 16 December 2014 (has links)
Vlasov's equation describes the time evolution of the distribution function for a collisionless physical system of identical particles, such as plasma or galaxies. Together with Poisson's equation, which yields the potential, it forms the Vlasov-Poisson system. In Euclidean space this system has been extensively studied in the past century. It has been recently shown that the Valsov-Poisson system exhibits an interesting, counter-intuitive phenomenon called Landau damping. Our universe, however, may not be at on a large scale, so it is important to introduce and study a natural extension of the Vlasov-Poisson systems to spaces of constant curvature. Our starting point is the unit sphere S2, but we further restrict our study to one of its great circles. We show that, even for this reduced model, the potential function has more singularities than in the classical case. Our main result is to derive a Penrose stability criterion for the linear Landau damping phenomenon. / Graduate / 0405 / shengyis@uvic.ca
710

Computational Multiscale Methods for Defects: 1. Line Defects in Liquid Crystals; 2. Electron Scattering in Defected Crystals

Pourmatin, Hossein 01 December 2014 (has links)
In the first part of this thesis, we demonstrate theory and computations for finite-energy line defect solutions in an improvement of Ericksen-Leslie liquid crystal theory. Planar director fields are considered in two and three space dimensions, and we demonstrate straight as well as loop disclination solutions. The possibility of static balance of forces in the presence of a disclination and in the absence of ow and body forces is discussed. The work exploits an implicit conceptual connection between the Weingarten-Volterra characterization of possible jumps in certain potential fields and the Stokes-Helmholtz resolution of vector fields. The theoretical basis of our work is compared and contrasted with the theory of Volterra disclinations in elasticity. Physical reasoning precluding a gauge-invariant structure for the model is also presented. In part II of the thesis, the time-harmonic Schrodinger equation with periodic potential is considered. We derive the asymptotic form of the scattering wave function in the periodic space and investigate the possibility of its application as a DtN non-reflecting boundary condition. Moreover, we study the perfectly matched layer method for this problem and show that it is a reliable method, which converges rapidly to the exact solution, as the thickness of the absorbing layer increases. Moreover, we use the tight-binding method to numerically solve the Schrodinger equation for Graphene sheets, symmetry-adapted Carbon nanotubes and DNA molecules to demonstrate their electronic behavior in the presence of local defects. The results for Y-junction Carbon nanotubes depict very interesting properties and confirms the predictions for their application as new transistors.

Page generated in 0.0698 seconds