• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude théorique et numérique des équations non-linéaires de Sobolev / The mathematical study and the numerical analysis of a nonlinear Sobolev equation

Bekkouche, Fatiha 22 June 2018 (has links)
L'objectif de la thèse est l'étude mathématique et l'analyse numérique du problème non linéaire de Sobolev. Un premier chapitre est consacré à l'analyse a priori pour le problème de Sobolev où on utilise des méthodes de semi-discrétisation explicite en temps. Des estimations d'erreurs ont été obtenues assurant que les schémas numériques utilisés convergent lorsque le pas de discrétisation en temps et le pas de discrétisation en espace tendent vers zéro. Dans le second chapitre, on s'intéresse au problème de Sobolev singulièrement perturbé. En vue de la stabilité des schémas numériques, on utilise dans cette partie des méthodes numériques implicites (la méthode d'Euler et la méthode de Crank- Nicolson) pour discrétiser le problème par rapport au temps. Dans le troisième chapitre, on présente des applications et des illustrations où on utilise le logiciel "FreeFem++". Dans le dernier chapitre, on considère une équation de type Sobolev et on s'intéresse à la dérivation d'estimations d'erreur a posteriori pour la discrétisation de cette équation par la méthode des éléments finis conforme en espace et un schéma d'Euler implicite en temps. La borne supérieure est globale en espace et en temps et permet le contrôle effectif de l'erreur globale. A la fin du chapitre, on propose un algorithme adaptatif qui permet d'atteindre une précision relative fixée par l'utilisateur en raffinant les maillages adaptativement et en équilibrant les contributions en espace et en temps de l'erreur. On présente également des essais numériques. / The purpose of this work is the mathematical study and the numerical analysis of the nonlinear Sobolev problem. A first chapter is devoted to the a priori analysis for the Sobolev problem, where we use an explicit semidiscretization in time. A priori error estimates were obtained ensuring that the used numerical schemes converge when the time step discretization and the spatial step discretization tend to zero. In a second chapter, we are interested in the singularly perturbed Sobolev problem. For the stability of numerical schemes, we used in this part implicit semidiscretizations in time (the Euler method and the Crank-Nicolson method). Our estimates of Chapters 1 and 2 are confirmed in the third chapter by some numerical experiments. In the last chapter, we consider a Sobolev equation and we derive a posteriori error estimates for the discretization of this equation by a conforming finite element method in space and an implicit Euler scheme in time. The upper bound is global in space and time and allows effective control of the global error. At the end of the chapter, we propose an adaptive algorithm which ensures the control of the total error with respect to a user-defined relative precision by refining the meshes adaptively, equilibrating the time and space contributions of the error. We also present numerical experiments.

Page generated in 0.0748 seconds