• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 96
  • 24
  • 22
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 10
  • 7
  • 2
  • Tagged with
  • 169
  • 169
  • 169
  • 79
  • 41
  • 27
  • 26
  • 26
  • 22
  • 22
  • 18
  • 16
  • 16
  • 15
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

The Stability of the Solutions of Ordinary Differential Equations

Richmond, Donald Everett, 1898- 08 1900 (has links)
This thesis is a study of stability of the solutions of differential equations.
102

The evolution of equation-solving: Linear, quadratic, and cubic

Porter, Annabelle Louise 01 January 2006 (has links)
This paper is intended as a professional developmental tool to help secondary algebra teachers understand the concepts underlying the algorithms we use, how these algorithms developed, and why they work. It uses a historical perspective to highlight many of the concepts underlying modern equation solving.
103

The symmetry structures of curved manifolds and wave equations

Bashingwa, Jean Juste Harrisson January 2017 (has links)
A thesis submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Doctor of Philosophy, 2017 / Killing vectors are widely used to study conservation laws admitted by spacetime metrics or to determine exact solutions of Einstein field equations (EFE) via Killing’s equation. Its solutions on a manifold are in one-to-one correspondence with continuous symmetries of the metric on that manifold. Two well known spherically symmetric static spacetime metrics in Relativity that admit maximal symmetry are given by Minkowski and de-Sitter metrics. Some other spherically symmetric metrics forming interesting solutions of the EFE are known as Schwarzschild, Kerr, Bertotti-Robinson and Einstein metrics. We study the symmetry properties and conservation laws of the geodesic equations following these metrics as well as the wave and Klein-Gordon (KG) type equations constructed using the covariant d’Alembertian operator on these manifolds. As expected, properties of reduction procedures using symmetries are more involved than on the well known flat (Minkowski) manifold. / XL2017
104

Simultaneous reconstruction of the initial temperature and heat radiative coefficient.

January 2000 (has links)
Lau Kin Wing. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2000. / Includes bibliographical references (leaves 80-83). / Abstracts in English and Chinese. / Chapter 1 --- Introduction --- p.3 / Chapter 1.1 --- Heat conduction problem --- p.3 / Chapter 1.2 --- Direct problem --- p.4 / Chapter 1.3 --- Inverse problem --- p.4 / Chapter 1.4 --- Difficulty of the inverse problems --- p.5 / Chapter 1.5 --- A simple but important example for instability --- p.5 / Chapter 1.6 --- The purpose of this thesis --- p.7 / Chapter 2 --- Stability of the inverse problem --- p.9 / Chapter 2.1 --- Conditional stability results --- p.9 / Chapter 2.2 --- Stability of the inverse problems --- p.11 / Chapter 3 --- The continuous formulation --- p.30 / Chapter 3.1 --- Constrained minimization problem --- p.30 / Chapter 3.2 --- Existence of minimizers to the minimization problem --- p.31 / Chapter 4 --- Discretization and its convergence --- p.36 / Chapter 4.1 --- Finite element space --- p.36 / Chapter 4.2 --- Two important discrete projection operators --- p.37 / Chapter 4.3 --- Finite element problem --- p.39 / Chapter 4.4 --- Existence of minimizers to the finite element problem --- p.39 / Chapter 4.5 --- Discrete minimizers and global minimizers --- p.42 / Chapter 5 --- Numerical algorithms --- p.51 / Chapter 5.1 --- Gateaux derivative --- p.51 / Chapter 5.2 --- Nonlinear single-grid gradient method --- p.53 / Chapter 5.3 --- Nonlinear multigrid gradient method --- p.55 / Chapter 6 --- Numerical experiments --- p.60 / Chapter 6.1 --- One dimensional examples --- p.60 / Chapter 6.2 --- Two dimensional examples --- p.66
105

Numerical studies of some stochastic partial differential equations. / CUHK electronic theses & dissertations collection

January 2008 (has links)
In this thesis, we consider four different stochastic partial differential equations. Firstly, we study stochastic Helmholtz equation driven by an additive white noise, in a bounded convex domain with smooth boundary of Rd (d = 2, 3). And then with the help of the perfectly matched layers technique, we also consider the stochastic scattering problem of Helmholtz type. The second part of this thesis is to investigate the time harmonic case for stochastic Maxwell's equations driven by an color noise in a simple medium, and then we expand the results to the stochastic Maxwell's equations in case of dispersive media in Rd (d = 2, 3). Thirdly, we study stochastic parabolic partial differential equation driven by space-time color noise, where the domain O is a bounded domain in R2 with boundary ∂O of class C2+alpha for 0 < alpha < 1/2. In the last part, we discuss the stochastic wave equation (SWE) driven by nonlinear noise in 1D case, where the noise 626x6t W(x, t) is the space-time mixed second-order derivative of the Brownian sheet. / Many physical and engineering phenomena are modeled by partial differential equations which often contain some levels of uncertainty. The advantage of modeling using so-called stochastic partial differential equations (SPDEs) is that SPDEs are able to more fully capture interesting phenomena; it also means that the corresponding numerical analysis of the model will require new tools to model the systems, produce the solutions, and analyze the information stored within the solutions. / One of the goals of this thesis is to derive error estimates for numerical solutions of the above four kinds SPDEs. The difficulty in the error analysis in finite element methods and general numerical approximations for a SPDE is the lack of regularity of its solution. To overcome such a difficulty, we follow the approach of [4] by first discretizing the noise and then applying standard finite element methods and discontinuous Galerkin methods to the stochastic Helmholtz equation and Maxwell equations with discretized noise; standard finite element method to the stochastic parabolic equation with discretized color noise; Galerkin method to the stochastic wave equation with discretized white noise, and we obtain error estimates are comparable to the error estimates of finite difference schemes. / We shall focus on some SPDEs where randomness only affects the right-hand sides of the equations. To solve the four types of SPDEs using, for example, the Monte Carlo method, one needs many solvers for the deterministic problem with multiple right-hand sides. We present several efficient deterministic solvers such as flexible CG method and block flexible GMRES method, which are absolutely essential in computing statistical quantities. / Zhang, Kai. / Adviser: Zou Jun. / Source: Dissertation Abstracts International, Volume: 70-06, Section: B, page: 3552. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 144-155). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
106

Numerical reconstruction of heat fluxes. / CUHK electronic theses & dissertations collection

January 2003 (has links)
Xie Jian Li. / "August 2003." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2003. / Includes bibliographical references (p. 106-109). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
107

Application of the method of parametric differentiation to two dimensional transonic flows

Whitlow, Woodrow January 1979 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1979. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND AERONAUTICS. / Vita. / Includes bibliographical references. / by Woodrow Whitlow, Jr. / Ph.D.
108

Some robust optimization methods for inverse problems.

January 2009 (has links)
Wang, Yiran. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 70-73). / Abstract also in Chinese. / Chapter 1 --- Introduction --- p.6 / Chapter 1.1 --- Overview of the subject --- p.6 / Chapter 1.2 --- Motivation --- p.8 / Chapter 2 --- Inverse Medium Scattering Problem --- p.11 / Chapter 2.1 --- Mathematical Formulation --- p.11 / Chapter 2.1.1 --- Absorbing Boundary Conditions --- p.12 / Chapter 2.1.2 --- Applications --- p.14 / Chapter 2.2 --- Preliminary Results --- p.17 / Chapter 2.2.1 --- Weak Formulation --- p.17 / Chapter 2.2.2 --- About the Unique Determination --- p.21 / Chapter 3 --- Unconstrained Optimization: Steepest Decent Method --- p.25 / Chapter 3.1 --- Recursive Linearization Method Revisited --- p.25 / Chapter 3.1.1 --- Frechet differentiability --- p.26 / Chapter 3.1.2 --- Initial guess --- p.28 / Chapter 3.1.3 --- Landweber iteration --- p.30 / Chapter 3.1.4 --- Numerical Results --- p.32 / Chapter 3.2 --- Steepest Decent Analysis --- p.35 / Chapter 3.2.1 --- Single Wave Case --- p.36 / Chapter 3.2.2 --- Multiple Wave Case --- p.39 / Chapter 3.3 --- Numerical Experiments and Discussions --- p.43 / Chapter 4 --- Constrained Optimization: Augmented Lagrangian Method --- p.51 / Chapter 4.1 --- Method Review --- p.51 / Chapter 4.2 --- Problem Formulation --- p.54 / Chapter 4.3 --- First Order Optimality Condition --- p.56 / Chapter 4.4 --- Second Order Optimality Condition --- p.60 / Chapter 4.5 --- Modified Algorithm --- p.62 / Chapter 5 --- Conclusions and Future Work --- p.68 / Bibliography --- p.70
109

The Design of a Novel Tip Enhanced Near-field Scanning Probe Microscope for Ultra-High Resolution Optical Imaging

Nowak, Derek Brant 01 January 2010 (has links)
Traditional light microscopy suffers from the diffraction limit, which limits the spatial resolution to λ/2. The current trend in optical microscopy is the development of techniques to bypass the diffraction limit. Resolutions below 40 nm will make it possible to probe biological systems by imaging the interactions between single molecules and cell membranes. These resolutions will allow for the development of improved drug delivery mechanisms by increasing our understanding of how chemical communication within a cell occurs. The materials sciences would also benefit from these high resolutions. Nanomaterials can be analyzed with Raman spectroscopy for molecular and atomic bond information, or with fluorescence response to determine bulk optical properties with tens of nanometer resolution. Near-field optical microscopy is one of the current techniques, which allows for imaging at resolutions beyond the diffraction limit. Using a combination of a shear force microscope (SFM) and an inverted optical microscope, spectroscopic resolutions below 20 nm have been demonstrated. One technique, in particular, has been named tip enhanced near-field optical microscopy (TENOM). The key to this technique is the use of solid metal probes, which are illuminated in the far field by the excitation wavelength of interest. These probes are custom-designed using finite difference time domain (FDTD) modeling techniques, then fabricated with the use of a focused ion beam (FIB) microscope. The measure of the quality of probe design is based directly on the field enhancement obtainable. The greater the field enhancement of the probe, the more the ratio of near-field to far-field background contribution will increase. The elimination of the far-field signal by a decrease of illumination power will provide the best signal-to-noise ratio in the near-field images. Furthermore, a design that facilitates the delocalization of the near-field imaging from the far-field will be beneficial. Developed is a novel microscope design that employs two-photon non-linear excitation to allow the imaging of the fluorescence from almost any visible fluorophore at resolutions below 30 nm without changing filters or excitation wavelength. The ability of the microscope to image samples at atmospheric pressure, room temperature, and in solution makes it a very promising tool for the biological and materials science communities. The microscope demonstrates the ability to image topographical, optical, and electronic state information for single-molecule identification. A single computer, simple custom control circuits, field programmable gate array (FPGA) data acquisition, and a simplified custom optical system controls the microscope are thoroughly outlined and documented. This versatility enables the end user to custom-design experiments from confocal far-field single molecule imaging to high resolution scanning probe microscopy imaging. Presented are the current capabilities of the microscope, most importantly, high-resolution near-field images of J-aggregates with PIC dye. Single molecules of Rhodamine 6G dye and quantum dots imaged in the far-field are presented to demonstrate the sensitivity of the microscope. A comparison is made with the use of a mode-locked 50 fs pulsed laser source verses a continuous wave laser source on single molecules and J-aggregates in the near-field and far-field. Integration of an intensified CCD camera with a high-resolution monochromator allows for spectral information about the sample. The system will be disseminated as an open system design.
110

The surface area preserving mean curvature flow

McCoy, James A. (James Alexander), 1976- January 2002 (has links)
Abstract not available

Page generated in 0.1486 seconds