• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 5
  • 5
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 76
  • 76
  • 12
  • 12
  • 11
  • 11
  • 11
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Flow of second-grade fluids in regions with permeable boundaries

Maritz, Riette 22 February 2006 (has links)
The equation of motion for the flows of incompressible Newtonian fluids (Navier Stokes equations) under no-slip boundary conditions have been studied deeply from many perspectives. The questions of existence and uniqueness of both classical and weak solutions have received more than a fair share of attention. In this study the same problem for non-Newtonian fluids of second grade has been studied from the point of view of weak solutions and classical solutions for non-homogeneous boundary data, i.e., dynamical boundary conditions in regions with permeable boundaries. We consider the situation where a container is immersed in a larger fluid body and the boundary admits fluid particles moving across it in the direction of the normal. In this study we give alternative approaches through formulations of' dynamics at the boundary', the idea being that the normal component of velocity at the boundary is viewed as an unknown function which satisfies a differential equation intricately coupled to the flow in the region 'enclosed' by the boundary. We describe two mathematical models denoted by Problem PI and Problem P2. These models lead to dynamics at a permeable boundary, and a kinematical boundary condition for normal flow through the boundary. These conditions take into account the curvature of the boundary which enforces certain stresses. We then show with the help of the energy method that for fluids of second grade, the dynamics at the boundary and the boundary condition lead to conditional stability of the rest state for Problem P1 and Problem P2. We also prove uniqueness of classical solutions for the two models. The existence of a weak solution for this system of evolution equations is proved only for Problem P2 with the help of the Faedo-Galerkin method with a special basis. In this case the special basis is formed by eigenfunctions. The existence proof of at least one classical solution, local in time is established by means of a version of the Fixed-point Theorem of Bohnenblust and Karlin, and the Ascoli-Arzela Theorem. / Thesis (PhD (Applied Mathematics))--University of Pretoria, 2007. / Mathematics and Applied Mathematics / unrestricted
32

On some partial differential equation models in socio-economic contexts : analysis and numerical simulations

Pietschmann, Jan-Frederik January 2012 (has links)
This thesis deals with the analysis and numerical simulation of different partial differential equation models arising in socioeconomic sciences. It is divided into two parts: The first part deals with a mean-field price formation model introduced by Lasry andLions in 2007. This model describes the dynamic behaviour of the price of a good being traded between a group of buyers and a group of vendors. Existence (locally in time) of smooth solutions is established, and obstructions to proving a global existence result are examined. Also, properties of a regularised version of the model are explored and numerical examples are shown. Furthermore, the possibility of reconstructing the initial datum given a number of observations, regarding the price and the transaction rate, is considered. Using a variational approach, the problem can be expressed as a non-linear constrained minimization problem. We show that the initial datum is uniquely determined by the price (identifiability). Furthermore, a numerical scheme is implemented and a variety of examples are presented. The second part of this thesis treats two different models describing the motion of (large) human crowds. For the first model, introduced by R.L. Hughes in 2002, several regularised versions are considered. Existence and uniqueness of entropy solutions are proven using the technique of vanishing viscosity. In one space dimension, the dynamic behaviour of solutions of the original model is explored for some special cases. These results are compared to numerical simulations. Moreover, we consider a discrete cellular automaton model introduced by A. Kirchner and A. Schadschneider in 2002.By (formally) passing to the continuum limit, we obtain a system of partial differential equations. Some analytical properties, such as linear stability of stationary states, areexamined and extensive numerical simulations show capabilities and limitations of the model in both the discrete and continuous setting.
33

Optimal design of Hagen-Cockerall raft

Haren, Pierre January 1979 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Civil Engineering, 1979. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Bibliography: leaves 120-121. / by Pierre Haren. / M.S.
34

Applications of Real and Imaginary time Hierarchical Equations of Motion / 実時間と虚時間の階層方程式の実用

Zhang, Jiaji 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第24440号 / 理博第4939号 / 新制||理||1706(附属図書館) / 京都大学大学院理学研究科化学専攻 / (主査)教授 谷村 吉隆, 教授 林 重彦, 教授 鈴木 俊法 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
35

State space formulation for linear viscoelastic dynamic systems with memory.

Palmeri, Alessandro, De Luca, A., Muscolino, G., Ricciardelli, F. January 2003 (has links)
No / A dynamic system with memory is a system for which knowledge of the equations of motion, together with the state at a given time instant t0 is insufficient to predict the evolution of the state at time instants t>t0. To calculate the response of systems with memory starting from an initial time instant t0, complete knowledge of the history of the system for t<t0 is needed. This is because the state vector does not contain all the information necessary to fully characterize the state of the system, i.e., the state vector of the system is not complete. In this paper, a state space formulation of viscoelastic systems with memory is proposed, which overcomes the concept of memory by enlarging the state vector with a number of internal variables that bear the information about the previous history of the system. The number of these additional internal variables is in some cases finite, in other cases, it would need to be infinite, and an approximated model has to be used with a finite number of internal variables. First a state space representation of the generalized Maxwell model is shown, then a new state space model is presented in which the relaxation function is approximated with Laguerre polynomials. The accuracy of the two models is shown through numerical examples.
36

On Lagrangian meshless methods in free-surface flows

Silverberg, Jon P. 01 1900 (has links)
Classically, fluid dynamics have been dealt with analytically because of the lack of numerical resources (Yeung, 1982). With the development of computational ability, many formulations have been developed which typically use the traditional Navier-Stokes equations along with an Eulerian grid. Today, there exists the possibility of using a moving grid (Lagrangian) along with a meshless discretization. The first issue in meshless fluid dynamics is the equations of motion. There are currently two types of Lagrangian formulations. Spherical Particle Hydrodynamics (SPH) is a method which calculates all equations of motion explicitly. The Moving Particle Semi-implicit (MPS) method uses a mathematical foundation based on SPH. However, instead of calculating all laws of motion explicitly, a fractional time step is performed to calculate pressure. A proposed method, Lagrange Implicit Fraction Step (LIFS), has been created which improves the mathematical formulations on the fluid domain. The LIFS method returns to Continuum mechanics to construct the laws of motion based on decomposing all forces of a volume. It is assumed that all forces on this volume can be linearly superposed to calculate the accelerations of each mass. The LIFS method calculates pressure from a boundary value problem with the inclusion of proper flux boundary conditions. The second issue in meshless Lagrangian dynamics is the calculation of derivatives across a domain. The Monte Carlo Integration (MCI) method uses weighted averages to calculate operators. However, the MCI method can be very inaccurate, and is not suitable for sparse grids. The Radial Basis Function (RBF) method is introduced and studied as a possibility to calculate meshless operators. The RBF method involves a solution of a system of equations to calculate interpolants. Machine expenses are shown to limit the viability of the RBF method for large domains. A new method of calculation has been created called Multi-dimensional Lagrange Interpolating Polynomials (MLIP). While Lagrange Interpolating Polynomials are essentially a one-dimensional interpolation, the use of "dimensional-cuts" and Gaussian quadratures can provide multi-dimensional interpolation. This paper is divided into three sections. The first section specifies the equations of motion. The second section provides the mathematical basis for meshless calculations. The third section evaluates the effectiveness of the meshless calculations and compares two fluiddynamic codes. / Fund number: N62271-97-G-0041. / US Navy (USN) author.
37

Nonequilibrium statistical mechanics of inhomogeneous systems.

Ronis, David Michael January 1978 (has links)
Thesis. 1978. Ph.D.--Massachusetts Institute of Technology. Dept. of Chemistry. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND SCIENCE. / Includes bibliographical references. / Ph.D.
38

Higher-order numerical scheme for solving stochastic differential equations

Alhojilan, Yazid Yousef M. January 2016 (has links)
We present a new pathwise approximation method for stochastic differential equations driven by Brownian motion which does not require simulation of the stochastic integrals. The method is developed to give Wasserstein bounds O(h3/2) and O(h2) which are better than the Euler and Milstein strong error rates O(√h) and O(h) respectively, where h is the step-size. It assumes nondegeneracy of the diffusion matrix. We have used the Taylor expansion but generate an approximation to the expansion as a whole rather than generating individual terms. We replace the iterated stochastic integrals in the method by random variables with the same moments conditional on the linear term. We use a version of perturbation method and a technique from optimal transport theory to find a coupling which gives a good approximation in Lp sense. This new method is a Runge-Kutta method or so-called derivative-free method. We have implemented this new method in MATLAB. The performance of the method has been studied for degenerate matrices. We have given the details of proof for order h3/2 and the outline of the proof for order h2.
39

Integration of database technology and multibody system analysis

Tisell, Claes January 2000 (has links)
The design process includes many different activities inwhich various computational mechanics tools are used forbehaviour modelling of mechanical systems and their buildingblocks, e.g. machine elements. These tools usually supportlarge and complex models and they produce large quantities ofdata with a high degree of complexity. In these situations,efficient data management and the ability to search and sharedata are important issues to achieve an efficient designprocess. Today, this ability is usually not supported by theindividual applications even though this probably would improveand facilitate the ability to search for data on a higher levelin the engineering information system. This work investigates the ability of searching andcomparing analysis data within behaviour models of technicalsystems as well as over the analysis results. This is done byinvestigating the potential benefits of integrating moderndatabase technology with a multibody system (MBS) analysissoftware in the same manner that has been successfully done forbusiness and administrative applications. This has resulted inan implemented pilot system, named MECHAMOS, that integratesthe main-memory resident object-relational database managementsystem (DBMS) AMOSwith the symbolic multibody system (MBS)software SOPHIA operating in MapleV. This provides MECHAMOSwith both symbolic and numeric mathematical capabilities forMBS analysis and data management capabilities to search andcompare engineering data in the database. The approach, making data managing tools available in acomputer aided engineering software, considerably improves theanalysis of technical systems. The analysis is brought to ahigher level through the available query language and thedesired data is specified, fairly intuitively, in a query. Whenthe query is processed, the DBMS knows how to retrieve andautomatically derive the required data. As shown in someexamples, the ability to search over stored and derived data inthe database is not restricted to a single MBS-model inMECHAMOS. Because of the implemented materialisation handling,it is also possible to search, combine, and compare data fromseveral simulation results which are based on several differentmodels in the database. This extends the ability to performoptimisation from a traditional parameter study to thepossibility to analyse and compare different technical conceptsthrough the query language and hereby retrieve those conceptsthat fulfil certain requirements. If submodel techniques aresupported, queries over a set of components in the databasewould automatically create, analyse and compare the possibleconcepts. This would assist the designer in choosing the bestcomponents for a design.
40

Integration of database technology and multibody system analysis

Tisell, Claes January 2000 (has links)
<p>The design process includes many different activities inwhich various computational mechanics tools are used forbehaviour modelling of mechanical systems and their buildingblocks, e.g. machine elements. These tools usually supportlarge and complex models and they produce large quantities ofdata with a high degree of complexity. In these situations,efficient data management and the ability to search and sharedata are important issues to achieve an efficient designprocess. Today, this ability is usually not supported by theindividual applications even though this probably would improveand facilitate the ability to search for data on a higher levelin the engineering information system.</p><p>This work investigates the ability of searching andcomparing analysis data within behaviour models of technicalsystems as well as over the analysis results. This is done byinvestigating the potential benefits of integrating moderndatabase technology with a multibody system (MBS) analysissoftware in the same manner that has been successfully done forbusiness and administrative applications. This has resulted inan implemented pilot system, named MECHAMOS, that integratesthe main-memory resident object-relational database managementsystem (DBMS) AMOSwith the symbolic multibody system (MBS)software SOPHIA operating in MapleV. This provides MECHAMOSwith both symbolic and numeric mathematical capabilities forMBS analysis and data management capabilities to search andcompare engineering data in the database.</p><p>The approach, making data managing tools available in acomputer aided engineering software, considerably improves theanalysis of technical systems. The analysis is brought to ahigher level through the available query language and thedesired data is specified, fairly intuitively, in a query. Whenthe query is processed, the DBMS knows how to retrieve andautomatically derive the required data. As shown in someexamples, the ability to search over stored and derived data inthe database is not restricted to a single MBS-model inMECHAMOS. Because of the implemented materialisation handling,it is also possible to search, combine, and compare data fromseveral simulation results which are based on several differentmodels in the database. This extends the ability to performoptimisation from a traditional parameter study to thepossibility to analyse and compare different technical conceptsthrough the query language and hereby retrieve those conceptsthat fulfil certain requirements. If submodel techniques aresupported, queries over a set of components in the databasewould automatically create, analyse and compare the possibleconcepts. This would assist the designer in choosing the bestcomponents for a design.</p>

Page generated in 0.1188 seconds