Spelling suggestions: "subject:"equilibrium reach profile"" "subject:"equilibrium teach profile""
1 |
Beach Buffer Width Requirement Subject to Storm WaveLin, Wen-hua 25 July 2009 (has links)
With increasing demands on environmental protection in recent years, the Government agency concerned has recently proposed the strategies for shore protection and management, which aim for prevention and mitigation of coastal disaster and reduction in coastal erosion, as well as the creation of an environment with focus on landscape, ecology and community recreation. Soft and quasi-natural approach will be implemented to restore the glory of a stable coast.
Based on the consideration of disaster prevention, this study investigates the beach profile changes, which include beach berm erosion and bar formation resulting from storm waves with different return periods. The SBEACH model is used to estimate the beach changes subject to variable conditions of beach berm width, medium sand grain diameter, beach slope and design water level etc. Regression analysis is then applied to establish a relationship between the storm beach buffer width and relevant physical parameters. Prior to this, the results of large wave tank tests on beach profile changes conducted by Coastal Engineering Research Center in the United States are used to calibrate the two main parameters K and £` used in SBEACH model.
Beach profile changes can now be estimated systematically using a set of modified K and £` values. After having performed a series numerical studies, we may conclude that: (1) With storms of different return periods but identical non-dimensional fall velocity (H0/£sT), berm erosion increases and the location of the bar becomes further offshore as storm return period increases ; (2) With different sand grain sizes subject to identical storm wave conditions, beach berm erosion increases as grain size increased, but shoreline retreat decreases; and location of bar is further offshore for a beach consisting smaller sand grains; (3) Under the same storm return period and sand grain diameter (i.e., similar non-dimensional fall velocity), berm erosion increases as storm intensity and design water level increase, but shoreline retreat decreases and bar is located nearer; and vice versa; (4) from a series of calculations based on different sand grains and storm beach buffer width, it is found that larger buffer is required for beach with smaller grain size, in order to absorb the storm wave energy.
|
2 |
Evolution and Equilibration of Artificial Morphologic Perturbations in the Form of Nearshore Berm Nourishments Along the Florida Gulf CoastBrutsché, Katherine Emily 26 June 2014 (has links)
Inlets and channels are dredged often to maintain navigation safety. It is beneficial to reintroduce the dredged material back into the littoral system, in the form of beach or nearshore nourishments. Nourishment in the nearshore is becoming an increasingly utilized method, particularly for dredged material that contains more fine sediment than the native beach. This research examines the morphologic evolution of two different nearshore nourishments. A nearshore berm was constructed at Fort Myers Beach, Florida using mixed-sized sediment dredged from a nearby channel. The nearshore berm was placed in water depths between 1.2 and 2.4 m with the berm crest just below MLLW in the shape of a bar. The nearshore berm migrated onshore while the system was approaching a dynamic equilibrium. Near the end of the fourth year, the beach profiles had returned to the equilibrium shape characteristic of the study area. Gaps in the berm allowed water circulation and should be considered as a design parameter. The fine sediment fractions in the original placed material was selectively transported and deposited offshore, while the coarser component moved onshore. The dry beach maintained the same sediment properties throughout the study period and was not influenced by the fine sediment in the initial construction of the berm. Another nearshore nourishment was placed along eastern Perdido Key, Florida in 2011-2012 using maintenance dredged material from nearby Pensacola Pass. Different from the Fort Myers Beach berm, the material was placed within the swash-zone, with a maximum elevation of +0.91 m NAVD88 (or 0.62 m above MHHW). The low constructed berm elevation allowed natural overwash processes to occur frequently, which resulted in net onshore sediment transport and growth of the active beach berm. Sediment volume gain west of the project area due to longshore spreading of the nourishment occurred mostly in the trough between the shoreline and the bar, rather than on the dry beach. The swash-zone berm evolved back to the natural equilibrium profile shape maintained in the study area within 8 months. The performance of the swash-zone nourishment was compared to two previous beach nourishments at the same location in 1985 and 1989-1991, with higher berm elevations, at +3 m and +1.2 m NAVD88, respectively. The 1.2-km 1985 nourishment performed the poorest with a shoreline retreat rate of 40 m/year. The 7.3-km 1989-1991 nourishment performed the best with a retreat rate of 11 m/year. This suggests that high berm elevations do not necessarily lead to better nourishment performance. Longshore extent of a nourishment may play an essential role. The distant passage of two tropical storms (Tropical Storm Debby and Hurricane Isaac) generated high waves for the study areas. The two berm nourishments responded differently to the storm. Response was also compared to a beach nourishment in Sand Key. The bar-shaped Fort Myers Beach berm was split into two smaller bars, while a storm berm developed for the swash-zone nourishment at Perdido Key. In both cases, the energetic storm conditions accelerated the evolution of the berm profiles toward equilibrium. As compared to the measured nearshore waves by this study, CMS-Wave accurately propagated the WIS Hindcast waves. SBEACH accurately captured the maximum water elevation, consistent with measured upper limit of morphology change. The model correctly predicted beach and nearshore erosion during the storms. The growth of the storm berm at the Perdido Key swash-zone nourishment was predicted reasonably well by the SBEACH model. However, the magnitudes of the storm-induced erosion and the locations of the offshore bar were not accurately predicted consistently.
|
3 |
Size-selective sediment transport and cross-shore profile evolution in the nearshore zoneSrisuwan, Chatchawin 12 November 2012 (has links)
Cross-shore bathymetric evolution in the nearshore zone often leads to threatening consequences such as beach erosion and shoreline retreat that concern the coastal community. A new, comprehensive cross-shore morphodynamic model was developed that can be used to describe and predict these phenomena. The study included both physical and numerical models that were designed to focus on the influence of sediment size characteristics on the cross-shore sediment transport process. For a profile equilibrium timescale, three types of beach profiles with different sediment mixtures were simulated in a small-scale, random-wave flume laboratory using erosive, storm, and accretive wave conditions. Dynamic relationships between the sediment grain sorting and beach profile changes were found to be evident as size-graded sediment fractions tended to relocate to different energetic zones along the cross-shore profiles. Existing phase-averaged wave and circulation models were utilized together with several new intra-wave modules for predicting important hydrodynamic parameters that were validated using the experimental data. A novel, multi-size sediment transport model was formulated to compute individual transport rates of size-graded sediment fractions while accounting for their interaction and non-linear size dependencies. The model was coupled with a new grain sorting model that resolves cross-shore grain sorting and vertical grain lamination. Compared to a traditional modeling approach, the new comprehensive model proved to offer superior modeling accuracy for both profile evolution and sediment grain size change. The use of the model is most advantageous for a condition with intensive grain sorting, a common scenario on a natural beach profile. Equilibrium beach profile is also better simulated by the model as size-graded fractions are predicted to relocate to different zones where they could withstand local hydrodynamics. Other new components that also help improve the modeling capability include the terms for wave-breaking and bed-slope effects, wave-crest sediment flux, and acceleration-induced bottom-shear stress. Besides superior profile modeling accuracy, sediment size characteristics and their spatial and temporal variations are also a useful set of information provided by the new model.
|
4 |
Análisis y mejoras en la evaluación de diversos términos de los modelos de evolución de playas en escalas de medio plazoRequejo Landeira, María Soledad 12 July 2005 (has links)
En la Tesis titulada "Análisis y mejoras en la evaluación de diversos términos de los modelos de evolución de playas en escalas de medio plazo" se desarrolla un modelo de evolución de playas de medio-largo plazo y se aplica a zonas de refracción-difracción. La Tesis se divide en tres secciones principales:SECCIÓN 2. Fundamentos y desarrollo del modelo de evolución de medio-largo plazoSe desarrolla y valida con datos de campo el modelo de evolución de playas de medio-largo plazo.SECCIÓN 3. Oleaje en rotura en zonas de refracción-difracción en los modelos de evolución de playasSe propone y valida un método para la determinación de las características del oleaje en rotura en zonas de refracción-difracción.SECCIÓN 4. Perfil de equilibrio en zonas de refracción-difracciónSe deriva una expresión analítica para definir el perfil de equilibrio en zonas de refracción-difracción y se calibra con datos de campo. / In this Thesis entitled "Analysis and improvements in the evaluation of several terms of medium-term beach evolution models" a medium-long term beach evolution model is developed and applied in refraction-diffraction areas. The Thesis is composed of the following main sections:SECTION 2. Fundaments and development of a medium-long term beach evolution modelIn this section a medium-long term beach evolution model is developed and validated based on field data.SECTION 3. Breaking wave characteristics in refraction-diffraction areas for beach evolution modelsIn this section a method to determine the breaking wave characteristics in refraction-diffraction areas is proposed and validated.SECTION 4. Equilibrium beach profile for refraction-diffraction areasIn this section an analytical expression to calculate the equilibrium beach profile for refraction-diffraction areas is derived, being calibrated based on field data.
|
Page generated in 0.0527 seconds