• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Existência de moduli para equivalência Hölder de funções analíticas / Moduli existence for Hölder equivalence of analytical functions

Silva, Joserlan Perote da January 2016 (has links)
SILVA, Joserlan Perote da. Existência de moduli para equivalência Hölder de funções analíticas. 2016. 51 f. Tese (Doutorado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2016. / Submitted by Erivan Almeida (eneiro@bol.com.br) on 2016-05-12T17:30:37Z No. of bitstreams: 1 2016_tese_jpsilva.pdf: 588345 bytes, checksum: 0d431d35b6066546720c644c4271be15 (MD5) / Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2016-05-13T11:08:29Z (GMT) No. of bitstreams: 1 2016_tese_jpsilva.pdf: 588345 bytes, checksum: 0d431d35b6066546720c644c4271be15 (MD5) / Made available in DSpace on 2016-05-13T11:08:29Z (GMT). No. of bitstreams: 1 2016_tese_jpsilva.pdf: 588345 bytes, checksum: 0d431d35b6066546720c644c4271be15 (MD5) Previous issue date: 2016 / In this work, we show that Hölder equivalence of analytic functions germs (C2, 0) → (C, 0)admits continuous moduli. More precisely, we constructed an invariant of the Hölder equivalence of such germs that varies continuously in a family ft : (C2, 0) → (C, 0). For a single germ ft the invariant of ft is given in terms of the leading coefficients of the asymptotic expansion of ft along the branches of generic polar curve of ft . / Neste trabalho, mostramos que equivalência Hölder de germes de funções analíticas (C2, 0) → (C, 0) admite moduli contínuo. Mais precisamente, construimos um invariante da equivalência Hölder de tais germes que varia continuamente numa família ft : (C2, 0) → (C, 0). Para um único germe ft o invariante de ft é dado em termos dos coeficientes principais das expansões assintóticas de ft ao longo dos ramos da curva polar genérica de ft.

Page generated in 0.0467 seconds