Spelling suggestions: "subject:"equivalent time sampling"" "subject:"aquivalent time sampling""
1 |
Electroniques dédiées à l'asservissement d'oscillateurs et à la mesure physique à l'aide de capteurs à ondes élastiques / Electronics dedicated to oscillators and psysical mesurement using elastic wave sensorsChretien, Nicolas 27 June 2014 (has links)
Le travail en bande de base permet de s’affranchir du bruit de multiplication de fréquenced’un signal. Cependant, la conception d’un oscillateur fonctionnant à haute fréquence nécessited’avoir un composant sélectif en fréquence, fonctionnant à haute fréquence et avec un facteurde qualité élevée. L’approche proposée dans cette thèse consiste à évaluer un composant à ondeélastique de volume à harmoniques élevées, le HBAR, pour la réalisation d’un oscillateur compactet stable, travaillant en bande de base à 2,45 GHz, à des fins d’utilisation de source defréquence pour un système RADAR. Les oscillateurs réalisés présentent un bruit de phase de-100 dBc/Hz pour un écart à la porteuse de 1 kHz, avec une perspective d’amélioration d’une dizainede dBc/Hz de cette valeur d’après la simulation. L’étude porte également sur l’analyse del’influence du bruit de phase de l’oscillateur local sur la résolution d’une mesure RADAR dontl’effet est démontré expérimentalement en utilisant une ligne à retard à onde élastique de surface(SAW) comme cible RADAR coopérative. Le travail effectué sur cette cible coopérative apermis d’aboutir à un prototype d’électronique embarqué pour l’interrogation de lignes à retardà ondes élastiques utilisées en tant que capteurs passifs interrogeables à distance. L’architecturede l’interrogateur combine une méthode RADAR impulsionnelle à un système d’échantillonnageen temps équivalent permettant de réduire l’importance de la puissance de calcul dansle traitement de la réponse. Les inconvénients de l’échantillonnage en temps équivalent sontminimisés par une interrogation judicieuse pour acquérir seulement les points nécessaires à lamesure. Les mesures effectuées sur un capteur de température commercial présentent une résolutionde 0,2°C avec une bande passante de 35 kHz. Pour les applications nécessitant une bandepassante plus élevée (allant jusqu’à 200 kHz), un second prototype n’ayant pas de restrictionsur les ressources de calcul mises en oeuvre est également présenté dans cette thèse, combinantla même méthode impulsionnelle avec un échantillonnage en temps réel. / Eliminating the step of frequency multiplication, by working in baseband, reduces the phasenoise of an oscillator. However, the design of a high frequency oscillator requires a frequencyselective component, which operates at high frequency and with a high quality factor. The approachproposed in this thesis is to evaluate a High-overtone Bulk Acoustic-wave Resonator,the HBAR, for the realization of a compact and stable oscillator at 2.45 GHz for a RADAR system.The designed oscillator exhibits a phase noise of −100 dBc/Hz at 1 kHz from the carrier,with an expected improvement of a dozen dBc/Hz according to the simulation. The study alsofocuses on the analysis of the local oscillator phase noise impact on the resolution of a RADARmeasurement and an experimental demonstration is done using a delay line surface acousticwave (SAW) as cooperative RADAR target. The work on this cooperative target has lead to aprototype of an embedded electronics for interrogating surface acoustic wave delay lines usedas passive sensors remotely interrogated through a wireless link. The architecture combines thepulsed RADAR signal generation method with an equivalent time sampling system in orderto reduce the computing power needed to process the response. The disadvantages of equivalenttime sampling are minimized by a smart interrogation strategy to acquire only mandatorysamples. Measurements on a commercial temperature sensor have a resolution of 0.2°C witha 35 kHz bandwidth. For applications in need of higher bandwidth (up to 200 kHz), a secondprototype with no restriction on computing resources is also presented in this thesis, combiningthe same impulse RADAR method with real-time sampling.
|
2 |
Concept de radars novateurs pour la vision à travers les milieux opaques / Innovative radar concept for through-the-wall applicationsMerelle, Vincent 19 September 2018 (has links)
La « vision » à travers les milieux opaques (murs, cloisons, décombres, ou plus généralement tout milieu qui occulte la vision humaine) est l’un des problèmes clefs du contrôle et de la sécurité. Il apparaît à l’heure actuelle un réel besoin de disposer de dispositifs d’observation à travers ces milieux pour des applications tant militaires (lors des assauts, des prises d’otages, etc.) que civiles (recherche de personnes enfouies dans des décombres, dans un incendie, etc). Les avancées sur cette problématique ont conduit à mettre en place des systèmes radars à très courte portée, opérationnels pour la détection et le tracking de personnes dans des environnements simples. Cependant ils nécessitent que les cibles soient en déplacement afin de les différencier des objets statiques. Cette limitation constitue un défaut majeur pour un certain nombre de scénarii réels où des personnes, par stratégie ou par contrainte, restent immobiles. Ces travaux de thèse visent à explorer les mécanismes de détection de personnes statiques par le biais de leurs micro-mouvements, e.g. des mouvements induits par le thorax lors de la respiration. Nous avons étudié - d’un point de vue théorique - les principes physiques sous-jacents à la détection de ces micro-mouvements par radar UWB impulsionnel à partir du mécanisme Doppler impulsionnel. Ce dernier s’appuie sur des mesures consécutives des phases des impulsions réfléchies. La compréhension de ce phénomène a permis de définir une architecture radar impulsionnelle et de la positionner, en termes de contributions, au regard des différents radars UWB proposés dans la littérature : le FMCW et le radar de bruit. Deux dispositifs radars ont servi de support à ce travail. Le premier, de type démonstrateur académique, repose sur l’utilisation d’un oscilloscope rapide pour numériser les impulsions UWB de 3 à 6 GHz de bande. Il a permis de mettre en place une chaîne de traitement complète de vision à travers les murs. Le second dispositif est un prototype radar développé autour d’une plateforme de numérisation ultra-rapide (100 Gsps par échantillonnage équivalent) de fréquence de rafraîchissement très élevée (100 Hz). Il est construit autour d’un FPGA, d’un ADC rapide (1,25 GHz) et d’un T&H très large bande (18 GHz). Il permet ainsi la détection des micro-mouvements par traitement Doppler impulsionnel. / "Vision" through opaque environments (walls, partitions, rubble, or any environment that obscures human vision) is one of the key issues of control and security. Advances on this issue have led to operational shortrange radar systems for people detection and tracking in simple environments. However, most of them require the targets to move in order to differentiate them from static objects. This requirement constitues a major shortcoming for a certain number of real scenarios where people, by strategies or by constraints, remain motionless. Hence, this thesis aims to explore the mechanisms of detection of static people through their micro-movements, e.g. movements induced by the thorax during breathing. We have studied - from a theoretical point of view - the physical principles underlying the detection of these micro-movements by pulsed UWB radar with the pulsed Doppler phenomenon, which relies on consecutive measurements of the reflected pulses phases. The understanding of this phenomenon made it possible to define a radar architecture and to position it, in terms of contributions, with regard to the different UWB radars proposed in the literature : the FMCW and the noise radar. Two radar devices served as support for this work. An academic demonstrator based on the use of a fast oscilloscope to digitize the pulses. It allowed to set up a complete processing chain for the application of vision through the walls. The second device is a radar prototype developed around a high-speed scanning platform (100 Gsps perequivalent sampling) with a very high refresh rate (100 Hz). This prototype is built around an FPGA, a fast ADC (1.25 GHz) and a very wide band T&H (18 GHz). This thereby enables to detect micro-movements by pulsed Doppler processing.
|
Page generated in 0.0867 seconds