Spelling suggestions: "subject:"erbium doped fiber amplifier"" "subject:"orbium doped fiber amplifier""
1 |
Study of dynamic phenomena in WDM optical fibre links and networks based on EDFAsDimopoulos, C. January 2001 (has links)
No description available.
|
2 |
Fixed-point realisation of erbium doped fibre amplifer control algorithms on FPGAWijaya, Shierly January 2009 (has links)
The realisation of signal processing algorithms in fixed-point offers substantial performance advantages over floating-point realisations. However, it is widely acknowledged that the task of realising algorithms in fixed-point is a challenging one with limited tool support. This thesis examines various aspects related to the translation of algorithms, given in infinite precision or floating-point, into fixed-point. In particular, this thesis reports on the implementation of a given algorithm, an EDFA (Erbium-Doped Fibre Amplifier) control algorithm, on a FPGA (Field Programmable Gate Array) using fixed-point arithmetic. An analytical approach is proposed that allows the automated realisation of algorithms in fixedpoint. The technique provides fixed-point parameters for a given floating-point model that satisfies a precision constraint imposed on the primary output of the algorithm to be realised. The development of a simulation framework based on this analysis allows fixed-point designs to be generated in a shorter time frame. Albeit being limited to digital algorithms that can be represented as a data flow graph (DFG), the approach developed in the thesis allows for a speed up in the design and development cycle, reduces the possibility of error and eases the overall effort involved in the process. It is shown in this thesis that a fixed-point realisation of an EDFA control algorithm using this technique produces results that satisfy the given constraints.
|
3 |
Optický zesilovač v laboratorní výuce / Optical amplifier in laboratory practiceŠustr, Pavel January 2009 (has links)
The aim of this thesis is to introduce to reader the application and use of optical EDFA amplifiers in optical transmission and to show wiring and practical test, including measurements on amplifier. The aim of this thesis is to propose the use of optical amplifier in laboratory practice for subject Optical networks. The thesis briefly introduces the problems of data transmissions through optical fibers with a focus on the use of optical amplifiers. The basic characteristic of optical transmission paths and the reasons for the use of optical amplifiers are described here. One entire chapter is devoted to distinction of optical amplifiers. Amplifiers can be divided according to location in the transmission path to the booster, in-line and pre-amplifiers and according to the used of amplifying technology to optical amplifiers with subsidies, semiconductor optical amplifiers and Raman optical amplifiers. The factors affecting the efficiency of optical amplifiers, such as noise and the level of saturated power are mentioned here too. The different types of optical amplifiers from the two producers are also described. From these amplifiers was chosen EDFA CzechLight Amplifier from Optokon to be used for the laboratory exercise in the subject of Optical networks. The use of EDFA optical amplifiers in optical transmission lines is mentioned here too. These amplifiers can be used in telecommunications transmission systems and for data transmission over long distances. They will find use in WDM transmission systems and cable TV distribution through the optical fiber to the end users. Practical measurements were performed on optical amplifier CLA-PB01F. In the transmission route was located attenuator and the dependence of output power to input signal power was measured. The amplification course was linear in the range of input values provided by the manufacturer. Laboratory exercise for the subject of Optical networks is aimed at preacquaintance of students with problems EDFA optical amplifiers and practical measurements with the optical amplifier CLA-PB01F. Students acquire basic theoretical knowledge of the issue and verify the functionality of optical amplifiers on a specific exercise. This work is destined for all who wish to get basic knowledge of optical amplifiers, their characteristics and possibilities of their use in optical transmission lines.
|
Page generated in 0.0847 seconds