• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 8
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 47
  • 28
  • 21
  • 17
  • 10
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The effect of discontinuities on the erodibility of rock in unlined spillways of dams

Pitsiou, Sofia January 1990 (has links)
Problems with erosion in unlined spillways of dams, have caused environmental and safety hazards, and necessitate the development of reliable scientific methods to assess the erodibility of the bedrock material. In an attempt to analyze the causes and effects of different geological, geotechnical, hydraulic, hydrological and engineering design parameters on erosion of unlined spillways, a number of dam spillways in the R.S.A. were studied. All the parameters considered important for the erosion resistance of the rock were collected and correlated with hydraulic factors and observed extent of erosion. Rock type, strength, weathering and uniformity of the geological conditions are important geotechnical considerations while velocity and energy of the water flow are the main hydraulic parameters. The main consideration of the study was the effect of the discontinuities. All the properties of the jointing of the rock mass, such as number of joint sets, RQD, joint spacing, joint separation, joint orientation, roughness and filling material, were surveyed. Joints. weaken the rock mass and induce removal of the rock blocks if the joint properties are unfavourable to stability. The jointed bedrock is much less resistant to flowing or falling water, the result being an extensive and quickly formed scour. Various rock mass classification systems have been applied and a reasonable correlation between rock class and extent of erosion was established by means of slightly modified Kirsten (1982) and Weaver (1975) rippability classifications. A number of methods for the prevention and repair of erosion damage have been proposed. / Dissertation (MSc)--University of Pretoria, 1990. / gm2014 / Geology / unrestricted
22

[en] AN ASSESSMENT ON THE EFFECTIVENESS OF HUMIC SUBSTANCES IN REDUCING THE ERODIBILITY OF A QUARRING WASTE MATERIAL FROM PEDRA MIRACEMA MINING / [pt] AVALIAÇÃO DA EFETIVIDADE DA ADIÇÃO DE SUBSTÂNCIA HÚMICA NA REDUÇÃO DA ERODIBILIDADE DE UM MATERIAL DE DESMONTE ORIUNDO DA MINERAÇÃO DE PEDRA MIRACEMA

GRICEL ALCIRA PORTILLO MIRANDA 15 January 2021 (has links)
[pt] O presente estudo visa a avaliar a efetividade da adição de substâncias húmicas obtidas a partir da destilação de um rejeito de carvão mineral na redução da erodibilidade de um material de desmonte oriundo da mineração de Pedra Miracema. O material de Desmonte empregado no referido estudo é oriundo da extração de rochas ornamentais no município de Santo Antônio de Pádua, situado na região Noroeste do Estado do Rio de Janeiro. O material de desmonte tem textura arenosa e apresenta um teor de argila inferior a 10 por cento e o teor de matéria orgânica praticamente nulo, sendo classificado pelo SUCS como uma areia siltosa, o que lhe confere uma condição de elevada erodibilidade. A fim de reduzir a sua erodibilidade, foram adicionadas diferentes porcentagens de substância húmica proveniente do rejeito de carvão mineral (0 por cento, 0,5 por cento, 1 por cento, 3 por cento, 5 por cento). Adicionalmente, para efeito de comparação se aplicou também 1 por cento de uma substância húmica disponível comercialmente. A erodibilidade da mistura material de desmonte - substâncias húmicas foi avaliada através de um programa de ensaios laboratoriais que incluiu a realização de ensaios de desagregação, ensaios de compressão diametral e ensaios de furo de agulha. Paralelamente, foram realizados com as diferentes misturas ensaios de capacidade de troca catiônica, determinação de teor de matéria orgânica, microscopia ótica e microscopia de eletrônica de varredura a fim de justificar os resultados dos ensaios de avaliação da erodibilidade. Os resultados do programa experimental permitiram sugerir que a incorporação de substâncias húmicas a matriz terrosa do material de desmonte reduz o seu potencial de erodibilidade. Verificou-se ainda que uma maior eficácia do tratamento com o passar do tempo. / [en] This study assessed the effectiveness of humic substances in reducing the erodibility of a quarring waste material from pedra miracema mining. The quarring waste is highly erodible since it possesses a sandy texture, a clay content less than 10 per cent and an organic content close to zero. The humic substance used in the experimental program was obtained from coal waste and it was incorporated to the tailing at the following contents: 0,5 per cent, 1 per cent, 3 per cent and 5 per cent. It was also used a commercial product at 1 per cent content to evaluate the coal was performance. Erodibility was assessed through the use of degradation tests, Brazilian test and pinhole test. Additionally, in order to foster the discussions of the experimental program results, microscopy tests (both optical and electronic), cation exchange capacity and organic matter determinations were performed. The results have shown that the erodibility of the tailing can be reduced by the addition of humic substances. The higher the content the higher the reduction. It was also observed that the performance of humic substances in reducing erodibility increases with time.
23

Changes in Streambank Erodibility and Critical Shear Stress Due to Surface Subaerial Processes

Henderson, Marc Bryson 19 September 2006 (has links)
Previous studies have shown that soil erodibility and critical shear stress are highly influenced by weathering processes such as freeze-thaw cycling and wet-dry cycling. Despite over forty years of research attributing changes in soil properties over time to climate-dependent variables, little quantitative information is available on the relationships between streambank erodibility and critical shear stress and environmental conditions and processes that enhance streambank erosion potential. The goal of this study was to investigate temporal changes in streambank erodibility and critical shear stress due to surface weathering. Soil erodibility and critical shear stress were measured monthly in situ using a multi-angle submerged jet test device. Environmental and soil data were also collected directly at the streambank surface to determine freeze-thaw cycles, soil moisture, soil temperature, bulk density, soil erodibility, critical shear stress, and other atmospheric conditions that could impact bank erosion potential. Statistical tests, including a nonparametric alternative to ANOVA and multiple comparison tests, were used to determine if temporal changes in soil erosion potential were greater than spatial differences. Regression analyses were also utilized to identify the factors contributing to possible changes in soil erodibility, critical shear stress, and bulk density. The nonparametric alternative to ANOVA in combination with Dunn's nonparametric multiple comparison test showed soil erodibility was significantly higher (p=0.024) during the winter (November - March) and the spring/fall (April - May, September - October). Regression analyses showed 70 percent of soil erodibility variance was attributed to freeze-thaw cycling alone. Study results also indicated that bulk density is highly influenced by climate changes since gravimetric water content and freeze-thaw cycles combined explain as much as 86 percent of the variance in bulk density measurements. Results of this study show significant amounts of variation in the resistance of streambank soils to fluvial erosion can be attributed to subaerial processes, specifically changes in soil moisture and temperature. These results have potential implications for streambank modeling and restoration projects that assume constant values for soil erodibility. Watershed models and restoration designs should consider the implications of changing soil erodibility during the year in model development and stream restoration designs. / Master of Science
24

Influence of Geotechnical Properties on Sediment Dynamics, Erodibility, and Geomorphodynamics in Coastal Environments Based on Field Measurements

Brilli, Nicola Carmine 06 June 2023 (has links)
Geotechnical sediment properties such as moisture content, relative density, bearing capacity, and undrained shear strength have been discussed in the context of coastal sediment dynamics. However, these properties have rarely been assessed in their respective relevance or quantitatively related to sediment transport and erodibility. Also, to date there is no framework available for collecting direct measurements of these properties for estimating initiation of motion and erosion rates. Here, it is postulated that improving the ability to measure geotechnical sediment properties in energetic foreshore environments can improve our ability to predict coastal response to climate change. Through a series of field measurements, the research presented here (1) provides a framework for conducting geotechnical measurements of beaches, (2) advances portable free fall penetrometer (PFFP) data analysis in intertidal environments through the introduction of an impact velocity dependent strain-rate correction factor, (3) relates textural and sediment strength properties derived from PFFP measurements to an erosion rate parameter and hydrodynamically driven bed-level change, and (4) uses PFFP measurements to develop a sediment classification scheme in terms of soil behavior and erosion behavior for a mixed sediment type Arctic environment. Relationships between sediment properties other than grain size, most significantly void ratio, and erodibility parameters highlight the relevance of these measurements in geomorphodynamically active sandy beach environments. For the cohesive sediments in the Arctic, undrained shear strength was also related to an erosion rate parameter, allowing for a categorical framework for erodibility classification to be developed. The cohesive framework was combined with the relationships developed for sandy sediments and used to highlight areas of active sediment transport in the context of local morphodynamic and ice gouging processes. Finally, a simple case study showed how implementing in-situ erodibility parameters was important for long-term morphological modelling. The results represent a step forward in our ability to predict and mitigate climate change related issues from coastal erosion. / Doctor of Philosophy / Climate change driven impacts on coastal environments include increasing frequency and severity of storms, coastal erosion, and inundation of populated areas. Specifically for Arctic environments, warming has caused more sediment to be introduced into coastal waters as well as accelerated rates of permafrost melting and shoreline retreat and decreases in sea ice. One aspect of understanding how these changes will continue to affect coastal communities and our ability to predict climate change effects is understanding the role of sediment properties on sediment erosion and shoreline change. Physical and geomechanical (strength) properties of coastal sediments are important for a variety of coastal applications but have rarely been investigated in the context of quantifying, predicting, and assessing erosion, specifically in the context of field measurements. Towards this end, a series of field surveys were conducted along the coast of North Carolina at a sandy beach, and in Harrison Bay, Alaska, an Arctic coastal zone with both sandy and muddy sediments. Tools for taking physical samples of the beach and seabed, measuring the sediment strength, among other properties in place were used to characterize the local sediments. Once a framework was developed for characterizing the type of sediment, the measured properties were then related to measurements of erosion rate from a series of laboratory experiments performed on physical samples taken from the sites. Finally, one of the instruments for measuring sediment strength both on land and in the water was used to develop classification schemes for seabed sediments in terms of their erodibility. The results of this work highlight the importance of geotechnical properties for coastal sediment transport processes, reveal new relationships between sediment properties and properties quantifying erosion behavior, and offer a framework for future research to classify erodibility of coastal environments in the field with a single piece of equipment. Overall, the work presented here contributes to our ability to measure, quantify, and predict coastal response to climate change.
25

Evaluation of an In Situ Measurement Technique for Streambank Critical Shear Stress and Soil Erodibility

Charonko, Cami Marie 23 June 2010 (has links)
The multiangle submerged jet test device (JTD) provides a simple in situ method of measuring streambank critical shear stress (Ï c) and soil erodibility (kd). Previous research showed streambank kd and Ï c can vary by up to four orders of magnitude at a single site; therefore, it is essential to determine if the large range is due to natural variability in soil properties or errors due to the test method. The study objectives were to evaluate the repeatability of the JTD and determine how it compares to traditional flume studies. To evaluate the repeatability, a total of 21 jet tests were conducted on two remolded soils, a clay loam and clay, compacted at uniform moisture content to a bulk density of 1.53 g/cm^3 and 1.46 g/cm^3, respectively. To determine the similarity between JTD and a traditional measurement method, JTD Ï c and kd measurements were compared with measurements determined from flume tests. The JTD kd and Ï c ranged from 1.68-2.81 cm³/N-s and 0.28-0.79 Pa, respectively, for the clay loam and 1.36-2.69 cm³/N-s and 0.30-2.72 Pa, respectively, for the clay. The modest variation of kd and Ï c for the remolded soils suggests the JTD is repeatable, indicating the wide range of parameters measured in the field was a result of natural soil variability. The JTD median kd and Ï c, except clay loam kd (clay loam kd = 2.31 cm^3/N-s, Ï c = 0.45 Pa; clay kd = 2.18 cm^3/N-s, Ï c = 1.10 Pa) were significantly different than the flume values (clay loam kd = 2.43 cm³/N-s, Ï c = 0.23 Pa; clay kd = 4.59 cm³/N-s, Ï c = 0.16 Pa); however, considering the range of potential errors in both test methods, the findings indicate the multiangle submerged jet test provides reasonable measurement of erosion parameters in a field setting. / Master of Science
26

Evaluation of the Jet Test Method for determining the erosional properties of Cohesive Soils; A Numerical Approach

Weidner, Katherine Lourene 14 May 2012 (has links)
Estimates of bank erosion typically require field measurements to determine the soil erodibility since soil characteristics are highly variable between sites, especially for cohesive soils. The submerged jet test device is an in situ method of determining the critical shear stress and soil erodibility of cohesive soils. A constant velocity jet, applied perpendicular to the soil surface, creates a scour hole which is measured at discrete time intervals. While the results of these tests are able to provide values of critical shear stress and soil erodibility, the results are often highly variable and do not consider certain aspects of scour phenomena found in cohesive soils. Jet test measurements taken on the lower Roanoke River showed that the results varied for samples from similar sites and bulk failures of large areas of soil were common on the clay banks. Computational Fluid Dynamics (CFD) can be used to determine the effect of scour hole shape changes on the applied shear stress. Previous calculation methods assumed that the depth of the scour hole was the only parameter that affected the applied shear stress. The analysis of the CFD models showed that depth did heavily influence the maximum shear stress applied to the soil boundary. However, the scour hole shape had an impact on the flow conditions near the jet centerline and within the scour hole. Wide, shallow holes yielded results that were similar to the flat plate, therefore it is recommended that field studies only use jet test results from wide, shallow holes to determine the coefficient of erodibility and the critical shear stress of cohesive soils. / Master of Science
27

Reciclagem de pavimentos semirrígidos com adição de cimento : contribuição ao desenvolvimento de um método de dosagem / Full-depth reclamation of semi-rigid pavements with cement : contribution for the development of a mix design method

Kleinert, Thaís Radünz January 2016 (has links)
O final da vida útil de pavimentos com bases rígidas se caracteriza pelo aparecimento de trincas de blocos e de fadiga. Neste cenário, a reciclagem das camadas de base e revestimento asfáltico, com adição de cimento, surge como técnica importante para reabilitação dessas estruturas. Além de se tratar de uma solução vantajosa do ponto de vista técnico, é competitiva em termos econômicos, além de sustentável. Entretanto, a escassa normatização nacional dificulta sua aplicação, destacando-se a falta de um procedimento de dosagem. Objetivando contribuir para o desenvolvimento de um método de dosagem de camadas recicladas com cimento, desenvolveu-se um programa experimental, contemplando a caracterização mecânica (resistência e rigidez), a variação volumétrica e a erodibilidade de misturas contendo fresado asfáltico, materiais de bases rígidas (brita graduada tratada com cimento e solo-cimento) e cimento Portland. Foram analisados os efeitos da porcentagem de fresado, do teor de cimento e do tempo de cura, compactando-se os corpos de prova na energia Modificada. Com auxílio de um software estatístico, foi elaborado um planejamento experimental para definição das misturas analisadas, contemplando-se diversos níveis para as variáveis independentes (teores de cimento entre 1% e 7%, e porcentagens de fresado variando entre 8% e 92%, aproximadamente). Os tempos de cura considerados foram extrínsecos ao planejamento e variaram de acordo com o ensaio, sendo de 3, 7 e 14 dias para os ensaios de comportamento mecânico e de 7 dias para os demais ensaios. Obtiveram-se modelos com efeitos estatisticamente significativos, com exceção da expansão. Os demais modelos apresentaram coeficientes de determinação de médios a elevados, tendo em vista a heterogeneidade dos materiais estudados, além do tamanho amostral considerável. Foi verificado que todas as variáveis afetam as propriedades analisadas, sendo que o teor de cimento demonstrou maior efeito, sendo que sua adição melhora consideravelmente o comportamento das misturas empregadas, frente à ação do tráfego e da água. Foram alcançados resultados bastante elevados de resistência à compressão simples (1,00 MPa a 6,49 MPa) e resistência à tração na compressão diametral (0,17 MPa a 1,22 MPa); já a rigidez das misturas apresentou uma ampla variação de resultados (484 MPa a 20.031 MPa). Com relação aos materiais de base empregados (brita graduada tratada com cimento e solo-cimento), não se observou uma tendência única; as misturas com solo-cimento apresentaram maior resistência, entretanto, com comportamento ligeiramente inferior quanto à variação volumétrica e à erodibilidade. Na análise da rigidez, os materiais de base mostraram comportamento bastante similar. Para concluir, foi verificado que o procedimento proposto por Fedrigo (2015) também é satisfatório para a dosagem de misturas recicladas constituídas por antigas bases cimentadas e fresado asfáltico, restando ainda quantificar a possível retração por secagem das misturas estudadas. / The end of the useful life of pavements with rigid bases characterizes by the appearance of block and fatigue cracking. The full-depth reclamation with cement (FDR-C) of this layer combined with the asphalt layer seem to be a good choice for the rehabilitation of the pavement structure. Besides being an advantageous solution from a technical point of view, it is competitive in economic terms, besides being sustainable. However, the Brazilian standards are scarce thus limiting its application, highlighting the lack of an appropriated mix design method to this technique. In order to contribute for the development of an FDR-C mix design method, an experimental program was developed aiming to test the mechanical characterization (strength and stiffness), volumetric variation and the erodibility of mixtures made of reclaimed asphalt pavement (RAP), rigid base materials (cement treated crushed stone and soil-cement) and Portland cement. There were analyzed the effects of the RAP percentage, the cement content and the curing time of the specimens. For that, the compaction effort used was the Brazilian Modified one. Through a statistic software, an experimental planning was prepared for mixtures determination, with several levels for the independent variables (cement content between 1% and 7%, and RAP percentage varying by 8% up to 92%, approximately). The curing time analyzed was outward of experimental planning and it varied according to the kind of test. The specimens of mechanical performance were cured for 3, 7 and 14 days, and the other tests were examined at the 7th day of curing time. Models with statically significant effects were obtained, except the swell one. The others had medium and high coefficients of determination, given the heterogeneity of the studied materials, in addition to considerable sample size. It was found that all variables affect the analyzed properties, and the cement content proved to be with the greatest effect among the analyzed factors. Cement addition improves considerably the behavior of the mixtures for the traffic and water actions. Moreover, higher results were achieved for UCS (1.00 MPa up to 6.49 MPa) and ITS (0.17 MPa up to 1.22 MPa) tests. While the mixtures stiffness presented a wide range of results (484 MPa up to 20,031 MPa). Regarding the studied materials, it was observed that they do not have a single trend. The mixtures with soil-cement presented stronger, but with slightly lower behavior for volumetric variation and erodibility. At the stiffness analysis, different materials showed very similar behavior. All in all, it was found that the mix design method proposed by Fedrigo (2015) is also suitable for employment in semi-rigid FDR-C, still remaining to measure the possible drying shrinkage of specimens.
28

Erodibilidade de materiais inconsolidados da bacia do Ribeirão Samambaia (Região de São Pedro - SP) / Erodibility of unconsolidated material from Samambaia river basin (region of São Pedro - SP)

Fernandes, Débora de Oliveira 30 June 2003 (has links)
Dentre as diferentes propriedades de um solo, a erodibilidade é uma das mais importantes, por refletir a tendência de um determinado solo à erosão. Os fatores que mais interferem nesta propriedade são: a textura, a presença de agregados, a mineralogia e teor de argila presente, o pH, o Eh, a condutividade elétrica, entre outras. Neste contexto, devido à presença de inúmeras feições erosivas, desenvolveu-se uma pesquisa sobre os materiais inconsolidados, na bacia do Ribeirão Samambaia, região dos municípios de São Pedro e Águas de São Pedro, no Estado de São Paulo, área de aproximadamente 60 Km2. Para a elaboração dessa pesquisa, foram realizados ensaios laboratoriais de caracterização química e física de materiais inconsolidados presentes nesta bacia. Na quantificação de erodibilidade utilizou-se dois ensaios de absorção e perda de massa por imersão, pelos quais obtiveram-se respectivamente os coeficientes S e P, e posteriormente índices internacionais baseados em fatores como a presença de agregados, teores de argila, entre outros. Foram obtidos valores de erodibilidade altos, principalmente para os materiais inconsolidados transportados arenosos com matéria orgânica. Os altos resultados obtidos nos ensaios de erodibilidade para alguns materiais estão relacionados às baixas perdas de massa por imersão. Estas baixas perdas podem ser explicadas por algumas propriedades peculiares observadas nos ensaios básicos de caracterização, e posteriormente, confirmadas em observações com lupa e microscópio eletrônicos, dentre elas a presença de agregados, raízes e cimento herdado da rocha fonte. Também foi realizado um monitoramento hidrológico em quatro seções da bacia do Ribeirão Samambaia, com o qual pretendeu-se obter algumas informações sobre o comportamento dos sedimentos no interior desta bacia. / The erodibility is one of the most important among the different properties of a soil, for reflecting the tendency to the erosion. The factors that more interfers in this property are: texture, presence of aggregate, mineralogy and clay content, pH, electric conductivity, among others. This research was developed with the unconsolidated materials of the Ribeirão Samambaia basin, of São Pedro and Águas de São Pedro region, located in the state of São Paulo, due to countless erosive features. Laboratory tests were carried out for chemical and physical characterization of unconsolidated materials. For the quantification of the erodibility were performed water absorption and mass loss by immersion tests and international indexes based on basic properties as the presence of aggregate, clay content were done, too. High erodibility values were obtained for transported unconsolidated materials: alluvial deposit with organic material, and for some samples of others unconsolidated. For residual unconsolidated materials of Pirambóia, Botucatu, and Serra Geral formations were got low erodibility values due to peculiar intrinsic characteristics as observed by magnifying glass and electronic optical microscope, such as: presence of aggregates, roots and inherited cement of the original rock. An accompaniment hydrological was also accomplished in four sections of the basin of Ribeirão Samambaia, with which intended to obtain some information about the behavior of the sediments inside this basin.
29

Polymer-based treatments to control runoff, leachate and erosion from engineered slopes at Simfer Mine, Guinea, Africa

Campbell, Stephanie January 2013 (has links)
It is necessary to understand the erodibility and hydrological response of mine-site slope forming materials (SFMs), because of increasing awareness of the environmental impacts of mining. Steep engineered slopes in high intensity rainfall environments present a serious erosion risk. Temporary surface stabilisers, such as polyacrylamides (PAMs) and polyvinylacrylic latex (PVALs) are potentially cost effective erosion control solutions. In this study PAM and PVAL efficacy to reduce runoff, leachate and erosion was assessed at two application rates, with and without gypsum on SFMs from an iron ore mine in Guinea (West Africa). NSPASS (near-surface photogrammetry assessment of slope forming materials’ surface roughness) is a novel method that integrates digital image capture and GIS. It is shown to detect and quantify surface micro-relief changes of 2-3 mm, not visible to the naked eye. As expected, soil and non-soil SFMs were significantly different in terms of their physical and chemical properties. Phase I of the study investigated the erodibility of ten SFMs, including soil, ore and waste-rock. The results indicate that the hydrological response to rainfall of most SFMs is to generate leachate. Weathered phyllite (PHY-WEA) is the most erodible SFM by both runoff and leachate. Multiple regression analysis demonstrated that magnetic susceptibility, mineralogy and dry aggregate distribution; parameters not commonly assessed in erosion studies, are important in explaining SFM erodibility and hydrological response. Phase II evaluated critically the effectiveness of three commercially available polymer solutions (two PAMs and one PVAL) at reducing runoff, leachate and erosion from four of the most erodible SFMs identified in Phase I. The results indicate that some PAM and PVAL treatments significantly reduce runoff, leachate and erosion. Polymer efficacy is highly dependent on the physical and chemical properties of the SFM, as well as the mechanism of polymer to SFM adsorption. Increasing the application rate of select treatments lowered leachate volumes, runoff and leachate total sediment loads. Contrary to previous studies, gypsum amendments did not significantly improve polymer efficiency. This research has added to our understanding of the erodibility and hydrological response of soil and non-soil SFMs. This is the first study to evaluate critically the efficacy of PVALs in controlling erosion from mine-site SFMs. Future studies should continue to optimise NSPASS performance in monitoring changes in surface micro-relief.
30

Reciclagem de pavimentos semirrígidos com adição de cimento : contribuição ao desenvolvimento de um método de dosagem / Full-depth reclamation of semi-rigid pavements with cement : contribution for the development of a mix design method

Kleinert, Thaís Radünz January 2016 (has links)
O final da vida útil de pavimentos com bases rígidas se caracteriza pelo aparecimento de trincas de blocos e de fadiga. Neste cenário, a reciclagem das camadas de base e revestimento asfáltico, com adição de cimento, surge como técnica importante para reabilitação dessas estruturas. Além de se tratar de uma solução vantajosa do ponto de vista técnico, é competitiva em termos econômicos, além de sustentável. Entretanto, a escassa normatização nacional dificulta sua aplicação, destacando-se a falta de um procedimento de dosagem. Objetivando contribuir para o desenvolvimento de um método de dosagem de camadas recicladas com cimento, desenvolveu-se um programa experimental, contemplando a caracterização mecânica (resistência e rigidez), a variação volumétrica e a erodibilidade de misturas contendo fresado asfáltico, materiais de bases rígidas (brita graduada tratada com cimento e solo-cimento) e cimento Portland. Foram analisados os efeitos da porcentagem de fresado, do teor de cimento e do tempo de cura, compactando-se os corpos de prova na energia Modificada. Com auxílio de um software estatístico, foi elaborado um planejamento experimental para definição das misturas analisadas, contemplando-se diversos níveis para as variáveis independentes (teores de cimento entre 1% e 7%, e porcentagens de fresado variando entre 8% e 92%, aproximadamente). Os tempos de cura considerados foram extrínsecos ao planejamento e variaram de acordo com o ensaio, sendo de 3, 7 e 14 dias para os ensaios de comportamento mecânico e de 7 dias para os demais ensaios. Obtiveram-se modelos com efeitos estatisticamente significativos, com exceção da expansão. Os demais modelos apresentaram coeficientes de determinação de médios a elevados, tendo em vista a heterogeneidade dos materiais estudados, além do tamanho amostral considerável. Foi verificado que todas as variáveis afetam as propriedades analisadas, sendo que o teor de cimento demonstrou maior efeito, sendo que sua adição melhora consideravelmente o comportamento das misturas empregadas, frente à ação do tráfego e da água. Foram alcançados resultados bastante elevados de resistência à compressão simples (1,00 MPa a 6,49 MPa) e resistência à tração na compressão diametral (0,17 MPa a 1,22 MPa); já a rigidez das misturas apresentou uma ampla variação de resultados (484 MPa a 20.031 MPa). Com relação aos materiais de base empregados (brita graduada tratada com cimento e solo-cimento), não se observou uma tendência única; as misturas com solo-cimento apresentaram maior resistência, entretanto, com comportamento ligeiramente inferior quanto à variação volumétrica e à erodibilidade. Na análise da rigidez, os materiais de base mostraram comportamento bastante similar. Para concluir, foi verificado que o procedimento proposto por Fedrigo (2015) também é satisfatório para a dosagem de misturas recicladas constituídas por antigas bases cimentadas e fresado asfáltico, restando ainda quantificar a possível retração por secagem das misturas estudadas. / The end of the useful life of pavements with rigid bases characterizes by the appearance of block and fatigue cracking. The full-depth reclamation with cement (FDR-C) of this layer combined with the asphalt layer seem to be a good choice for the rehabilitation of the pavement structure. Besides being an advantageous solution from a technical point of view, it is competitive in economic terms, besides being sustainable. However, the Brazilian standards are scarce thus limiting its application, highlighting the lack of an appropriated mix design method to this technique. In order to contribute for the development of an FDR-C mix design method, an experimental program was developed aiming to test the mechanical characterization (strength and stiffness), volumetric variation and the erodibility of mixtures made of reclaimed asphalt pavement (RAP), rigid base materials (cement treated crushed stone and soil-cement) and Portland cement. There were analyzed the effects of the RAP percentage, the cement content and the curing time of the specimens. For that, the compaction effort used was the Brazilian Modified one. Through a statistic software, an experimental planning was prepared for mixtures determination, with several levels for the independent variables (cement content between 1% and 7%, and RAP percentage varying by 8% up to 92%, approximately). The curing time analyzed was outward of experimental planning and it varied according to the kind of test. The specimens of mechanical performance were cured for 3, 7 and 14 days, and the other tests were examined at the 7th day of curing time. Models with statically significant effects were obtained, except the swell one. The others had medium and high coefficients of determination, given the heterogeneity of the studied materials, in addition to considerable sample size. It was found that all variables affect the analyzed properties, and the cement content proved to be with the greatest effect among the analyzed factors. Cement addition improves considerably the behavior of the mixtures for the traffic and water actions. Moreover, higher results were achieved for UCS (1.00 MPa up to 6.49 MPa) and ITS (0.17 MPa up to 1.22 MPa) tests. While the mixtures stiffness presented a wide range of results (484 MPa up to 20,031 MPa). Regarding the studied materials, it was observed that they do not have a single trend. The mixtures with soil-cement presented stronger, but with slightly lower behavior for volumetric variation and erodibility. At the stiffness analysis, different materials showed very similar behavior. All in all, it was found that the mix design method proposed by Fedrigo (2015) is also suitable for employment in semi-rigid FDR-C, still remaining to measure the possible drying shrinkage of specimens.

Page generated in 0.0727 seconds