Spelling suggestions: "subject:"erreur dde modèles"" "subject:"erreur dee modèles""
1 |
Adaptation de maillages anisotropes par un estimateur d'erreur hiérarchiqueBois, Richard 19 April 2018 (has links)
Dans cette thèse, nous présentons un nouvel estimateur d’erreur de type hiérarchique utilisable dans un algorithme d’adaptation de maillages afin d’obtenir une approximation plus précise d’une équation aux dérivées partielles. Nous décrivons les avantages que possèdent ce nouvel estimateur d’erreur versus ceux qui existent déjà dans la littérature et nous justifions sa construction. Plusieurs résultats numériques seront présentés dans les cas uni, bi et tridimensionnels. Nous montrons des exemples académiques (où la solution analytique est connue) pour mesurer l’efficacité et la précision du nouvel estimateur d’erreur. Nous montrons également des exemples d’adaptation de maillages pour des équations modélisant des phénomènes physiques comme l’écoulement d’un fluide autour d’un cylindre, la diffusion instationnaire et le contact entre des corps élastiques déformables. Ces exemples montrent que le nouvel estimateur d’erreur est utilisable pour une très grande classe de problèmes. / In this thesis, we present a new hierarchical error estimator that can be used in a mesh adaptation algorithm to obtain a more accurate approximation to the solution of a partial differential equation. This error estimator has many advantages that other existing error estimators do not have or lack of. For instance, it is, by construction, independant of the differential operator used to model a certain physical phenomena. It is also naturally generalisable to the case of approximations of arbitrary order, and this, without any specific treatment to the underlying theory. Finally, it is efficient, optimal in a sense that will be defined and permits the elements to stretch in a priviledged direction (anisotropy) in order to obtain high accuracy against regularly refined meshes. Many examples are given in the one, two and three dimensional cases. Analytical examples (the solution is known) is given to measure the effiency and precision of the new error estimator. Other examples of mesh adaptation for equations modeling different physical phenomena like the flow of a fluid around a cylinder, unsteady diffusion and contact between deformable elastic bodies are presented. These examples show that the new error estimator can be used for a wide variety of problems.
|
2 |
Performances et méthodes pour l'échantillonnage comprimé : Robustesse à la méconnaissance du dictionnaire et optimisation du noyau d'échantillonnage. / Performance and methods for sparse sampling : robustness to basis mismatch and kernel optimizationBernhardt, Stéphanie 05 December 2016 (has links)
Dans cette thèse, nous nous intéressons à deux méthodes permettant de reconstruire un signal parcimonieux largement sous-échantillonné : l’échantillonnage de signaux à taux d’innovation fini et l’acquisition comprimée.Il a été montré récemment qu’en utilisant un noyau de pré-filtrage adapté, les signaux impulsionnels peuvent être parfaitement reconstruits bien qu’ils soient à bande non-limitée. En présence de bruit, la reconstruction est réalisée par une procédure d’estimation de tous les paramètres du signal d’intérêt. Dans cette thèse, nous considérons premièrement l’estimation des amplitudes et retards paramétrisant une somme finie d'impulsions de Dirac filtrée par un noyau quelconque et deuxièmement l’estimation d’une somme d’impulsions de forme quelconque filtrée par un noyau en somme de sinus cardinaux (SoS). Le noyau SoS est intéressant car il est paramétrable par un jeu de paramètres à valeurs complexes et vérifie les conditions nécessaires à la reconstruction. En se basant sur l’information de Fisher Bayésienne relative aux paramètres d’amplitudes et de retards et sur des outils d’optimisation convexe, nous proposons un nouveau noyau d’échantillonnage.L’acquisition comprimée permet d’échantillonner un signal en-dessous de la fréquence d’échantillonnage de Shannon, si le vecteur à échantillonner peut être approximé comme une combinaison linéaire d’un nombre réduit de vecteurs extraits d’un dictionnaire sur-complet. Malheureusement, dans des conditions réalistes, le dictionnaire (ou base) n’est souvent pas parfaitement connu, et est donc entaché d’une erreur (DB). L’estimation par dictionnaire, se basant sur les mêmes principes, permet d’estimer des paramètres à valeurs continues en les associant selon une grille partitionnant l’espace des paramètres. Généralement, les paramètres ne se trouvent pas sur la grille, ce qui induit un erreur d’estimation même à haut rapport signal sur bruit (RSB). C’est le problème de l’erreur de grille (EG). Dans cette thèse nous étudions les conséquences des modèles d’erreur DB et EG en terme de performances bayésiennes et montrons qu’un biais est introduit même avec une estimation parfaite du support et à haut RSB. La BCRB est dérivée pour les modèles DB et EG non structurés, qui bien qu’ils soient très proches, ne sont pas équivalents en terme de performances. Nous donnons également la borne de Cramér-Rao moyennée (BCRM) dans le cas d’une petite erreur de grille et étudions l’expression analytique de l’erreur quadratique moyenne bayésienne (BEQM) sur l’estimation de l’erreur de grille à haut RSB. Cette dernière est confirmée en pratique dans le contexte de l’estimation de fréquence pour différents algorithmes de reconstruction parcimonieuse.Nous proposons deux nouveaux estimateurs : le Bias-Correction Estimator (BiCE) et l’Off-Grid Error Correction (OGEC) permettant de corriger l'erreur de modèle induite par les erreurs DB et EG, respectivement. Ces deux estimateurs principalement basés sur une projection oblique des mesures sont conçus comme des post-traitements, destinés à réduire le biais d’estimation suite à une pré-estimation effectuée par n’importe quel algorithme de reconstruction parcimonieuse. Les biais et variances théoriques du BiCE et du OGEC sont dérivés afin de caractériser leurs efficacités statistiques.Nous montrons, dans le contexte difficile de l’échantillonnage des signaux impulsionnels à bande non-limitée que ces deux estimateurs permettent de réduire considérablement l’effet de l'erreur de modèle sur les performances d’estimation. Les estimateurs BiCE et OGEC sont tout deux des schémas (i) génériques, car ils peuvent être associés à tout estimateur parcimonieux de la littérature, (ii) rapides, car leur coût de calcul reste faible comparativement au coût des estimateurs parcimonieux, et (iii) ont de bonnes propriétés statistiques. / In this thesis, we are interested in two different low rate sampling schemes that challenge Shannon’s theory: the sampling of finite rate of innovation signals and compressed sensing.Recently it has been shown that using appropriate sampling kernel, finite rate of innovation signals can be perfectly sampled even though they are non-bandlimited. In the presence of noise, reconstruction is achieved by a model-based estimation procedure. In this thesis, we consider the estimation of the amplitudes and delays of a finite stream of Dirac pulses using an arbitrary kernel and the estimation of a finite stream of arbitrary pulses using the Sum of Sincs (SoS) kernel. In both scenarios, we derive the Bayesian Cramér-Rao Bound (BCRB) for the parameters of interest. The SoS kernel is an interesting kernel since it is totally configurable by a vector of weights. In the first scenario, based on convex optimization tools, we propose a new kernel minimizing the BCRB on the delays, while in the second scenario we propose a family of kernels which maximizes the Bayesian Fisher Information, i.e., the total amount of information about each of the parameter in the measures. The advantage of the proposed family is that it can be user-adjusted to favor either of the estimated parameters.Compressed sensing is a promising emerging domain which outperforms the classical limit of the Shannon sampling theory if the measurement vector can be approximated as the linear combination of few basis vectors extracted from a redundant dictionary matrix. Unfortunately, in realistic scenario, the knowledge of this basis or equivalently of the entire dictionary is often uncertain, i.e. corrupted by a Basis Mismatch (BM) error. The related estimation problem is based on the matching of continuous parameters of interest to a discretized parameter set over a regular grid. Generally, the parameters of interest do not lie in this grid and there exists an estimation error even at high Signal to Noise Ratio (SNR). This is the off-grid (OG) problem. The consequence of the BM and the OG mismatch problems is that the estimation accuracy in terms of Bayesian Mean Square Error (BMSE) of popular sparse-based estimators collapses even if the support is perfectly estimated and in the high Signal to Noise Ratio (SNR) regime. This saturation effect considerably limits the effective viability of these estimation schemes.In this thesis, the BCRB is derived for CS model with unstructured BM and OG. We show that even though both problems share a very close formalism, they lead to different performances. In the biased dictionary based estimation context, we propose and study analytical expressions of the Bayesian Mean Square Error (BMSE) on the estimation of the grid error at high SNR. We also show that this class of estimators is efficient and thus reaches the Bayesian Cramér-Rao Bound (BCRB) at high SNR. The proposed results are illustrated in the context of line spectra analysis for several popular sparse estimator. We also study the Expected Cramér-Rao Bound (ECRB) on the estimation of the amplitude for a small OG error and show that it follows well the behavior of practical estimators in a wide SNR range.In the context of BM and OG errors, we propose two new estimation schemes called Bias-Correction Estimator (BiCE) and Off-Grid Error Correction (OGEC) respectively and study their statistical properties in terms of theoretical bias and variances. Both estimators are essentially based on an oblique projection of the measurement vector and act as a post-processing estimation layer for any sparse-based estimator and mitigate considerably the BM (OG respectively) degradation. The proposed estimators are generic since they can be associated to any sparse-based estimator, fast, and have good statistical properties. To illustrate our results and propositions, they are applied in the challenging context of the compressive sampling of finite rate of innovation signals.
|
Page generated in 0.0528 seconds