Spelling suggestions: "subject:"erro RMS"" "subject:"rro RMS""
1 |
M?todo gen?rico para estima??o e modelagem do erro RMS em dados de profundidade de sensores para vis?o 3DFernandez, Luis Enrique Ortiz 05 July 2017 (has links)
Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2017-11-06T21:05:53Z
No. of bitstreams: 1
LuisEnriqueOrtizFernandez_DISSERT.pdf: 11059946 bytes, checksum: bdd41462c0c6560f2ac2ded683b3e6b2 (MD5) / Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2017-11-20T22:59:57Z (GMT) No. of bitstreams: 1
LuisEnriqueOrtizFernandez_DISSERT.pdf: 11059946 bytes, checksum: bdd41462c0c6560f2ac2ded683b3e6b2 (MD5) / Made available in DSpace on 2017-11-20T22:59:57Z (GMT). No. of bitstreams: 1
LuisEnriqueOrtizFernandez_DISSERT.pdf: 11059946 bytes, checksum: bdd41462c0c6560f2ac2ded683b3e6b2 (MD5)
Previous issue date: 2017-07-05 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior (CAPES) / Na vis?o artificial usam-se v?rios dispositivos como o MS Kinect v1/v2, as c?meras
est?reo PG Bumblebee XB3 e a Stereolabs ZED, entre outros. Como todos s?o dispositivos
que estimam dados de profundidade, podem conter erros. Neste trabalho, apresenta-se
o projeto e implementa??o de um m?todo gen?rico para a estima??o do erro RMS em dados
de profundidade fornecidos por qualquer dispositivo, capaz de gerar dados do tipo
RGB-D, isto ?, uma imagem e um mapa de profundidade ao mesmo tempo. Para verifica??o
do m?todo foi constru?do um sistema embarcado baseado na placa NVIDIA Jetson
TK1 e tr?s sensores, as duas vers?es do MS Kinect e a c?mera est?reo ZED. No momento
da coleta de dados foram estabelecidos os modelos matem?ticos do erro RMS para cada
dispositivo e, ao final, foi feita uma an?lise da exatid?o de cada um. / In the artificial vision are used several devices like MS Kinect v1 / v2, the stereo
cameras PG Bumblebee XB3 and Stereolabs ZED, among others. Because they are all
devices that estimate depth data, they may contain errors. In this work, we present the
design and implementation of a generic method for estimating the RMS error in depth
data provided by any device, capable of generating data of type RGB-D, that is, an image
and a depth map Same time. To verify the method was built an embedded system based
on the NVIDIA Jetson TK1 and three sensors, the two versions of MS Kinect and the
ZED stereo camera. At the moment of the data collection, the mathematical models of
the RMS error were established for each device and, at the end, an analysis was made of
the accuracy of each one.
|
Page generated in 0.0366 seconds