Spelling suggestions: "subject:"error backpropagation"" "subject:"arror backpropagation""
1 |
Atgalinio klaidos sklidimo neuroninio tinklo realizavimo problemos ir taikymai / Realization and application of the error back propagation type neural networkVerbylaitė, Laura 24 September 2008 (has links)
Šiame magistriniame darbe išanalizuota dirbtinių neuroninių tinklų teorija. Detaliai išnagrinėtas atgalinio klaidos sklidimo algoritmas. Pagal jį parašytos programos: C++ kalba ir Matlab sistemoje su siūlomais neuroninių tinklų konstravimo įrankiais. Lyginant programas atlikti tyrimai su irisų ir vyno atpažinimo duomenimis. Tyrimo metu ištirti ir paanalizuoti daugiasluoksniai neuroniniai tinklai su paslėptais vienu ir dviem sluoksniais. / This paper offers a profound research the theory of artificial neural network. It gives a deep analysis of error back propagation and provides error back propagation program written in C++ language and Matlab system with relevant neural network construction tools. To compare both programs I carried out research of wines recognition data and irises data. Analyzed feedforward neural network with hidden one and two layers.
|
2 |
Optimization in an Error Backpropagation Neural Network Environment with a Performance Test on a Pattern Classification ProblemFischer, Manfred M., Staufer-Steinnocher, Petra 03 1900 (has links) (PDF)
Various techniques of optimizing the multiple class cross-entropy error function
to train single hidden layer neural network classifiers with softmax output transfer
functions are investigated on a real-world multispectral pixel-by-pixel classification
problem that is of fundamental importance in remote sensing. These techniques
include epoch-based and batch versions of backpropagation of gradient descent,
PR-conjugate gradient and BFGS quasi-Newton errors. The method of choice
depends upon the nature of the learning task and whether one wants to optimize
learning for speed or generalization performance. It was found that, comparatively
considered, gradient descent error backpropagation provided the best and most stable
out-of-sample performance results across batch and epoch-based modes of operation.
If the goal is to maximize learning speed and a sacrifice in generalisation is acceptable,
then PR-conjugate gradient error backpropagation tends to be superior. If the
training set is very large, stochastic epoch-based versions of local optimizers should
be chosen utilizing a larger rather than a smaller epoch size to avoid inacceptable
instabilities in the generalization results. (authors' abstract) / Series: Discussion Papers of the Institute for Economic Geography and GIScience
|
Page generated in 0.0893 seconds