Spelling suggestions: "subject:"error bounding"" "subject:"arror bounding""
1 |
Cartesian grid FEM (cgFEM): High performance h-adaptive FE analysis with efficient error control. Application to structural shape optimizationNadal Soriano, Enrique 14 February 2014 (has links)
More and more challenging designs are required everyday in today¿s industries.
The traditional trial and error procedure commonly used for mechanical
parts design is not valid any more since it slows down the design process and
yields suboptimal designs. For structural components, one alternative consists
in using shape optimization processes which provide optimal solutions.
However, these techniques require a high computational effort and require
extremely efficient and robust Finite Element (FE) programs. FE software
companies are aware that their current commercial products must improve in
this sense and devote considerable resources to improve their codes. In this
work we propose to use the Cartesian Grid Finite Element Method, cgFEM
as a tool for efficient and robust numerical analysis. The cgFEM methodology
developed in this thesis uses the synergy of a variety of techniques to achieve
this purpose, but the two main ingredients are the use of Cartesian FE grids
independent of the geometry of the component to be analyzed and an efficient
hierarchical data structure. These two features provide to the cgFEM
technology the necessary requirements to increase the efficiency of the cgFEM
code with respect to commercial FE codes. As indicated in [1, 2], in order to
guarantee the convergence of a structural shape optimization process we need
to control the error of each geometry analyzed. In this sense the cgFEM code
also incorporates the appropriate error estimators. These error estimators are
specifically adapted to the cgFEM framework to further increase its efficiency.
This work introduces a solution recovery technique, denoted as SPR-CD, that in combination with the Zienkiewicz and Zhu error estimator [3] provides very
accurate error measures of the FE solution. Additionally, we have also developed
error estimators and numerical bounds in Quantities of Interest based
on the SPR-CD technique to allow for an efficient control of the quality of
the numerical solution. Regarding error estimation, we also present three new
upper error bounding techniques for the error in energy norm of the FE solution,
based on recovery processes. Furthermore, this work also presents an
error estimation procedure to control the quality of the recovered solution in
stresses provided by the SPR-CD technique. Since the recovered stress field
is commonly more accurate and has a higher convergence rate than the FE
solution, we propose to substitute the raw FE solution by the recovered solution
to decrease the computational cost of the numerical analysis. All these
improvements are reflected by the numerical examples of structural shape optimization
problems presented in this thesis. These numerical analysis clearly
show the improved behavior of the cgFEM technology over the classical FE
implementations commonly used in industry. / Cada d'¿a dise¿nos m'as complejos son requeridos por las industrias actuales.
Para el dise¿no de nuevos componentes, los procesos tradicionales de prueba y
error usados com'unmente ya no son v'alidos ya que ralentizan el proceso y dan
lugar a dise¿nos sub-'optimos. Para componentes estructurales, una alternativa
consiste en usar procesos de optimizaci'on de forma estructural los cuales
dan como resultado dise¿nos 'optimos. Sin embargo, estas t'ecnicas requieren
un alto coste computacional y tambi'en programas de Elementos Finitos (EF)
extremadamente eficientes y robustos. Las compa¿n'¿as de programas de EF
son conocedoras de que sus programas comerciales necesitan ser mejorados
en este sentido y destinan importantes cantidades de recursos para mejorar
sus c'odigos. En este trabajo proponemos usar el M'etodo de Elementos Finitos
basado en mallados Cartesianos (cgFEM) como una herramienta eficiente
y robusta para el an'alisis num'erico. La metodolog'¿a cgFEM desarrollada en
esta tesis usa la sinergia entre varias t'ecnicas para lograr este prop'osito, cuyos
dos ingredientes principales son el uso de los mallados Cartesianos de EF independientes
de la geometr'¿a del componente que va a ser analizado y una
eficiente estructura jer'arquica de datos. Estas dos caracter'¿sticas confieren
a la tecnolog'¿a cgFEM de los requisitos necesarios para aumentar la eficiencia
del c'odigo cgFEM con respecto a c'odigos comerciales. Como se indica en
[1, 2], para garantizar la convergencia del proceso de optimizaci'on de forma
estructural se necesita controlar el error en cada geometr'¿a analizada. En
este sentido el c'odigo cgFEM tambi'en incorpora los apropiados estimadores de error. Estos estimadores de error han sido espec'¿ficamente adaptados al
entorno cgFEM para aumentar su eficiencia. En esta tesis se introduce un
proceso de recuperaci'on de la soluci'on, llamado SPR-CD, que en combinaci'on
con el estimador de error de Zienkiewicz y Zhu [3], da como resultado medidas
muy precisas del error de la soluci'on de EF. Adicionalmente, tambi'en se han
desarrollado estimadores de error y cotas num'ericas en Magnitudes de Inter'es
basadas en la t'ecnica SPR-CD para permitir un eficiente control de la calidad
de la soluci'on num'erica. Respecto a la estimaci'on de error, tambi'en se presenta
un proceso de estimaci'on de error para controlar la calidad del campo
de tensiones recuperado obtenido mediante la t'ecnica SPR-CD. Ya que el
campo recuperado es por lo general m'as preciso y tiene un mayor orden de
convergencia que la soluci'on de EF, se propone sustituir la soluci'on de EF por
la soluci'on recuperada para disminuir as'¿ el coste computacional del an'alisis
num'erico. Todas estas mejoras se han reflejado en esta tesis mediante ejemplos
num'ericos de problemas de optimizaci'on de forma estructural. Los resultados
num'ericos muestran claramente un mejor comportamiento de la tecnolog'¿a
cgFEM con respecto a implementaciones cl'asicas de EF com'unmente usadas
en la industria. / Nadal Soriano, E. (2014). Cartesian grid FEM (cgFEM): High performance h-adaptive FE analysis with efficient error control. Application to structural shape optimization [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/35620
|
2 |
Interval Based Parameter Identification for System Biology / Intervallbaserad parameteridentifiering för systembiologiAlami, Mohsen January 2012 (has links)
This master thesis studies the problem of parameter identification for system biology. Two methods have been studied. The method of interval analysis uses subpaving as a class of objects to manipulate and store inner and outer approximations of compact sets. This method works well with the model given as a system of differential equations, but has its limitations, since the analytical expression for the solution to the ODE is not always obtainable, which is needed for constructing the inclusion function. The other method, studied, is SDP-relaxation of a nonlinear and non-convex feasibility problem. This method, implemented in the toolbox bio.SDP, works with system of difference equations, obtained using the Euler discretization method. The discretization method is not exact, raising the need of bounding this discretization error. Several methods for bounding this error has been studied. The method of ∞-norm optimization, also called worst-case-∞-norm is applied on the one-step error estimation method. The methods have been illustrated solving two system biological problems and the resulting SCP have been compared. / Det här examensarbetet studerar problemet med parameteridentifiering för systembiologi. Två metoder har studerats. Metoden med intervallanalys använder union av intervallvektorer som klass av objekt för att manipulera och bilda inre och yttre approximationer av kompakta mängder. Denna metod fungerar väl för modeller givna som ett system av differentialekvationer, men har sina begränsningar, eftersom det analytiska uttrycket för lösningen till differentialekvationen som är nödvändigt att känna till för att kunna formulera inkluderande funktioner, inte alltid är tillgängliga. Den andra studerade metoden, använder SDP-relaxering, som ett sätt att komma runt problemet med olinjäritet och icke-konvexitet i systemet. Denna metod, implementerad i toolboxen bio.SDP, utgår från system av differensekvationer, framtagna via Eulers diskretiserings metod. Diskretiseringsmetoden innehåller fel och osäkerhet, vilket gör det nödvändigt att estimera en gräns för felets storlek. Några felestimeringsmetoder har studerats. Metoden med ∞-norm optimering, också kallat worst-case-∞-norm är tillämpat på ett-stegs felestimerings metoder. Metoderna har illustrerats genom att lösa två system biologiska problem och de accepterade parametermängderna, benämnt SCP, har jämförts och diskuterats.
|
Page generated in 0.0851 seconds