• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cartesian grid FEM (cgFEM): High performance h-adaptive FE analysis with efficient error control. Application to structural shape optimization

Nadal Soriano, Enrique 14 February 2014 (has links)
More and more challenging designs are required everyday in today¿s industries. The traditional trial and error procedure commonly used for mechanical parts design is not valid any more since it slows down the design process and yields suboptimal designs. For structural components, one alternative consists in using shape optimization processes which provide optimal solutions. However, these techniques require a high computational effort and require extremely efficient and robust Finite Element (FE) programs. FE software companies are aware that their current commercial products must improve in this sense and devote considerable resources to improve their codes. In this work we propose to use the Cartesian Grid Finite Element Method, cgFEM as a tool for efficient and robust numerical analysis. The cgFEM methodology developed in this thesis uses the synergy of a variety of techniques to achieve this purpose, but the two main ingredients are the use of Cartesian FE grids independent of the geometry of the component to be analyzed and an efficient hierarchical data structure. These two features provide to the cgFEM technology the necessary requirements to increase the efficiency of the cgFEM code with respect to commercial FE codes. As indicated in [1, 2], in order to guarantee the convergence of a structural shape optimization process we need to control the error of each geometry analyzed. In this sense the cgFEM code also incorporates the appropriate error estimators. These error estimators are specifically adapted to the cgFEM framework to further increase its efficiency. This work introduces a solution recovery technique, denoted as SPR-CD, that in combination with the Zienkiewicz and Zhu error estimator [3] provides very accurate error measures of the FE solution. Additionally, we have also developed error estimators and numerical bounds in Quantities of Interest based on the SPR-CD technique to allow for an efficient control of the quality of the numerical solution. Regarding error estimation, we also present three new upper error bounding techniques for the error in energy norm of the FE solution, based on recovery processes. Furthermore, this work also presents an error estimation procedure to control the quality of the recovered solution in stresses provided by the SPR-CD technique. Since the recovered stress field is commonly more accurate and has a higher convergence rate than the FE solution, we propose to substitute the raw FE solution by the recovered solution to decrease the computational cost of the numerical analysis. All these improvements are reflected by the numerical examples of structural shape optimization problems presented in this thesis. These numerical analysis clearly show the improved behavior of the cgFEM technology over the classical FE implementations commonly used in industry. / Cada d'¿a dise¿nos m'as complejos son requeridos por las industrias actuales. Para el dise¿no de nuevos componentes, los procesos tradicionales de prueba y error usados com'unmente ya no son v'alidos ya que ralentizan el proceso y dan lugar a dise¿nos sub-'optimos. Para componentes estructurales, una alternativa consiste en usar procesos de optimizaci'on de forma estructural los cuales dan como resultado dise¿nos 'optimos. Sin embargo, estas t'ecnicas requieren un alto coste computacional y tambi'en programas de Elementos Finitos (EF) extremadamente eficientes y robustos. Las compa¿n'¿as de programas de EF son conocedoras de que sus programas comerciales necesitan ser mejorados en este sentido y destinan importantes cantidades de recursos para mejorar sus c'odigos. En este trabajo proponemos usar el M'etodo de Elementos Finitos basado en mallados Cartesianos (cgFEM) como una herramienta eficiente y robusta para el an'alisis num'erico. La metodolog'¿a cgFEM desarrollada en esta tesis usa la sinergia entre varias t'ecnicas para lograr este prop'osito, cuyos dos ingredientes principales son el uso de los mallados Cartesianos de EF independientes de la geometr'¿a del componente que va a ser analizado y una eficiente estructura jer'arquica de datos. Estas dos caracter'¿sticas confieren a la tecnolog'¿a cgFEM de los requisitos necesarios para aumentar la eficiencia del c'odigo cgFEM con respecto a c'odigos comerciales. Como se indica en [1, 2], para garantizar la convergencia del proceso de optimizaci'on de forma estructural se necesita controlar el error en cada geometr'¿a analizada. En este sentido el c'odigo cgFEM tambi'en incorpora los apropiados estimadores de error. Estos estimadores de error han sido espec'¿ficamente adaptados al entorno cgFEM para aumentar su eficiencia. En esta tesis se introduce un proceso de recuperaci'on de la soluci'on, llamado SPR-CD, que en combinaci'on con el estimador de error de Zienkiewicz y Zhu [3], da como resultado medidas muy precisas del error de la soluci'on de EF. Adicionalmente, tambi'en se han desarrollado estimadores de error y cotas num'ericas en Magnitudes de Inter'es basadas en la t'ecnica SPR-CD para permitir un eficiente control de la calidad de la soluci'on num'erica. Respecto a la estimaci'on de error, tambi'en se presenta un proceso de estimaci'on de error para controlar la calidad del campo de tensiones recuperado obtenido mediante la t'ecnica SPR-CD. Ya que el campo recuperado es por lo general m'as preciso y tiene un mayor orden de convergencia que la soluci'on de EF, se propone sustituir la soluci'on de EF por la soluci'on recuperada para disminuir as'¿ el coste computacional del an'alisis num'erico. Todas estas mejoras se han reflejado en esta tesis mediante ejemplos num'ericos de problemas de optimizaci'on de forma estructural. Los resultados num'ericos muestran claramente un mejor comportamiento de la tecnolog'¿a cgFEM con respecto a implementaciones cl'asicas de EF com'unmente usadas en la industria. / Nadal Soriano, E. (2014). Cartesian grid FEM (cgFEM): High performance h-adaptive FE analysis with efficient error control. Application to structural shape optimization [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/35620
2

Interval Based Parameter Identification for System Biology / Intervallbaserad parameteridentifiering för systembiologi

Alami, Mohsen January 2012 (has links)
This master thesis studies the problem of parameter identification for system biology. Two methods have been studied. The method of interval analysis uses subpaving as a class of objects to manipulate and store inner and outer approximations of compact sets. This method works well with the model given as a system of differential equations, but has its limitations, since the analytical expression for the solution to the ODE is not always obtainable, which is needed for constructing the inclusion function. The other method, studied, is SDP-relaxation of a nonlinear and non-convex feasibility problem. This method, implemented in the toolbox bio.SDP, works with system of difference equations, obtained using the Euler discretization method. The discretization method is not exact, raising the need of bounding this discretization error. Several methods for bounding this error has been studied. The method of ∞-norm optimization, also called worst-case-∞-norm is applied on the one-step error estimation method. The methods have been illustrated solving two system biological problems and the resulting SCP have been compared. / Det här examensarbetet studerar problemet med parameteridentifiering för systembiologi. Två metoder har studerats. Metoden med intervallanalys använder union av intervallvektorer som klass av objekt för att manipulera och bilda inre och yttre approximationer av kompakta mängder. Denna metod fungerar väl för modeller givna som ett system av differentialekvationer, men har sina begränsningar, eftersom det analytiska uttrycket för lösningen till differentialekvationen som är nödvändigt att känna till för att kunna formulera inkluderande funktioner, inte alltid är tillgängliga. Den andra studerade metoden, använder SDP-relaxering, som ett sätt att komma runt problemet med olinjäritet och icke-konvexitet i systemet. Denna metod, implementerad i toolboxen bio.SDP, utgår från system av differensekvationer, framtagna via Eulers diskretiserings metod. Diskretiseringsmetoden innehåller fel och osäkerhet, vilket gör det nödvändigt att estimera en gräns för felets storlek. Några felestimeringsmetoder har studerats. Metoden med ∞-norm optimering, också kallat worst-case-∞-norm är tillämpat på ett-stegs felestimerings metoder. Metoderna har illustrerats genom att lösa två system biologiska problem och de accepterade parametermängderna, benämnt SCP, har jämförts och diskuterats.

Page generated in 0.0851 seconds