Spelling suggestions: "subject:"espaços uniforme locais"" "subject:"spaços uniforme locais""
1 |
Continuidade de atratores para sistemas dinâmicos: decomposição de Morse, equi-atração e domínios ilimitados / Continuity of attractors for dynamical systems: Morse decompositions, equiattraction and unbounded domainsCosta, Henrique Barbosa da 28 July 2016 (has links)
Neste trabalho estudamos a dinâmica assintótica de problemas parabólicos sob vista de diferentes teorias, particularmente interessados na estabilidade das propriedades dinâmicas dos sistemas. Estudamos a equi-atração no caso não autônomo pelos semifluxos skew-product, que transformam o sistema dinâmico não autônomo em um autônomo num espaço de fase conveniente. Para modelos multívocos, em que o semifluxo é uma função cujos valores são conjuntos, desenvolvemos a decomposição de Morse e mostramos sua equivalência com a existência de um funcional de Lyapunov, que é um resultado muito importante na teoria de semigrupos. Também estudamos a continuidade da dinâmica assintótica de um problema parabólico em um domínio ilimitado quando o aproximamos por domínios limitados específicos. / In this work we study assimptotic properties of parabolic problems under some different view of points, particularlly interested in the stability properties of the systems. We study equi-attraction in the non autonomous case using skew-product semiflows, which transform the non autonomous dynamical system into a autonomous one in a convenient phase space. For multivalued semiflows, in which the semiflow is a set valued function, we develop the Morse decomposition and show its equivalence with admiting a Lyapunov funcional, wich is a important result on the semigroup theory. We also study the continuity of the asymptotic dynamic for a parabolic problem in an unbouded domain when we approach it by bounded ones.
|
2 |
Continuidade de atratores para sistemas dinâmicos: decomposição de Morse, equi-atração e domínios ilimitados / Continuity of attractors for dynamical systems: Morse decompositions, equiattraction and unbounded domainsHenrique Barbosa da Costa 28 July 2016 (has links)
Neste trabalho estudamos a dinâmica assintótica de problemas parabólicos sob vista de diferentes teorias, particularmente interessados na estabilidade das propriedades dinâmicas dos sistemas. Estudamos a equi-atração no caso não autônomo pelos semifluxos skew-product, que transformam o sistema dinâmico não autônomo em um autônomo num espaço de fase conveniente. Para modelos multívocos, em que o semifluxo é uma função cujos valores são conjuntos, desenvolvemos a decomposição de Morse e mostramos sua equivalência com a existência de um funcional de Lyapunov, que é um resultado muito importante na teoria de semigrupos. Também estudamos a continuidade da dinâmica assintótica de um problema parabólico em um domínio ilimitado quando o aproximamos por domínios limitados específicos. / In this work we study assimptotic properties of parabolic problems under some different view of points, particularlly interested in the stability properties of the systems. We study equi-attraction in the non autonomous case using skew-product semiflows, which transform the non autonomous dynamical system into a autonomous one in a convenient phase space. For multivalued semiflows, in which the semiflow is a set valued function, we develop the Morse decomposition and show its equivalence with admiting a Lyapunov funcional, wich is a important result on the semigroup theory. We also study the continuity of the asymptotic dynamic for a parabolic problem in an unbouded domain when we approach it by bounded ones.
|
Page generated in 0.1128 seconds