Spelling suggestions: "subject:"espacetemps dde De bitter"" "subject:"espacetemps dde De critter""
1 |
Gravitation conformeBouchami, Jihène January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
2 |
Gravitation conformeBouchami, Jihène January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
|
3 |
The nonperturbative renormalization group for quantum field theory in de De Sitter space / Le groupe de renormalisation non perturbatif pour la théorie quantique des champs en espace-temps de De SitterGuilleux, Maxime 28 September 2016 (has links)
La cosmologie moderne amène à étudier la théorie quantique des champs en espace-temps courbe. Les champs scalaires légers, notamment, génèrent un mécanisme simple pour l'inflation et les fluctuations primordiales. Cependant, les calculs de boucles de ces modèles contiennent des divergences infrarouges et séculaires qui requièrent des techniques de resommation. Dans ce but, on implémente le groupe de renormalisation non perturbatif pour des champs scalaires en espace-temps de De Sitter. Dans un premier temps, on applique l'Approximation de Potentiel Local (APL). On démontre que les effets infrarouges sont responsables d'une restauration de la symétrie, et qu'une masse est générée en accord avec l'approche stochastique. On étudie ensuite la limite d'espace-temps plat de notre formalisme en prenant la courbure $H\to 0$, ce qui reproduit un certain nombre de résultats connus. Enfin, on s'intéresse à l'expansion dérivative, qui va au-delà de l'APL. Son implémentation semble trop complexe dans le cas général d'un espace-temps courbe, mais les symétries de De Sitter permettent de trouver une représentation simple. On définit une prescription pour tous les ordres de l'expansion, puis on implémente le flot du terme de premier ordre dans le cas simple où la dépendance en champ est négligée / The nonperturbative renormalization group for quantum field theory in de Sitter space.The study of cosmology draws us to the topic of quantum fields in curved space-time. In particular, light scalar fields offer a simple mechanism for inflation and primordial fluctuations. When computing loop corrections to these models however, infrared and secular divergences appear which call for resummation techniques. To this end, we implement the nonperturbative renormalization group for quantum scalar fields on a fixed de Sitter background. First, the Local Potential Approximation (LPA) is applied. We show that there is always symmetry restoration due to infrared effects, and that mass is generated in agreement with the stochastic approach. Next, we study the flat space limit of our formalism by taking the curvature $H\to0$, and we check that it reproduces a number of known results. Finally, we discuss the derivative expansion, which goes beyond the LPA. Its implementation seems too complex in general curved space-times, but de Sitter symmetries allow for a simpler representation. We define a prescription for all orders of the expansion, and discuss the flow of the first order term in the simple case where we neglect the field dependency (LPA')
|
4 |
Sur quelques problèmes de quantification : en espace-temps de de Sitter et par états cohérentsQueva, Julien 05 June 2009 (has links) (PDF)
Ce manuscrit de thèse rassemble quelques résultats concernant des problèmes de quantification. Il est divisé en deux parties : la quantification de champs invariants conforme sur l'espace-temps de de Sitter et deux quantifications par états cohérents. • La première partie s'inscrit dans un programme de quantification systématique et rigoureux, proche de l'axiomatique de Wightman, des champs sur l'espace-temps de de Sitter. Plus particulièrement, nous avons étudié les champs admettant une extension (naturelle) au groupe conforme. Après avoir clarifié les notions d'invariance sous les transformations de Weyl et sous le groupe conforme SO0(2, d) nous avons établi un point de vue géométrique reliant/déformant les champs sur l'espace-temps de (anti-)de Sitter à ceux sur l'espace-temps de Minkowski, tout en gardant transparente l'action du groupe conforme. Cette méthode nous a permis d'obtenir le propagateur du champ vectoriel invariant conforme, qui adopte alors une forme particulièrement simple et compacte. Enfin, notre approche se généralise aux champs tensoriels de rang plus élevé invariants conformes sur l'espace-temps de de Sitter. • La seconde partie de ce travail concerne l'utilisation des états cohérents dans les problèmes de quantification. Suivant la géométrie ou la topologie de l'espace des phases, nombres d'observables ne peuvent être quantifiées en suivant les règles de quantification canonique. En un certain sens la quantification par états cohérents, et leurs généralisations, permet de contourner ces difficultés, ou, du moins, fournit des idées quant à la façon de les contourner. Par exemple, la particule dans un puits infini de potentiel est un modèle pour la quantification par états cohérents comme l'opérateur impulsion, en dépit d'être symétrique, n'est pas auto-adjoint et, ainsi, ne peut vérifier les relations de commutation canonique (théorème de Pauli). Grâce à une nouvelle famille d'états cohérents vectoriels nous avons pu quantifier, de manière cohérente, la particule dans le puits infini de potentiel. Enfin, nous avons abordé la fuzzyfication de l'hyperboloïde, c'est-à-dire la quantification de l'espace-temps de de Sitter lui-même, grâce à une nouvelle base d'états cohérents vectoriels.
|
5 |
Les bulles de masse négative dans un espace de de Sitter.Mbarek, Saoussen 12 1900 (has links)
Nous étudions différentes situations de distribution de la matière d’une bulle de masse négative. En effet, pour les bulles statiques et à symétrie sphérique, nous commençons par l’hypothèse qui dit que cette bulle, étant une solution des équations d’Einstein, est une déformation au niveau d’un champ scalaire. Nous montrons que cette idée est à rejeter et à remplacer par celle qui dit que la bulle est formée d’un fluide parfait. Nous réussissons à démontrer que ceci est la bonne distribution de matière dans une géométrie Schwarzschild-de Sitter, qu’elle satisfait toutes les conditions et que nous sommes capables de résoudre numériquement ses paramètres de pression et de densité. / We study different situations of matter distribution of a negative mass bubble. For the case of static and spherically symmetric bubbles, we start with the hypothesis saying that this kind of bubble, being a solution of Einstein equations, is a deformation of scalar field. We show that this idea must be rejected and replaced by another saying that the bubble is formed by a perfect fluid. We succeed to demonstrate that this is the proper matter distribution within Schwarzschild-De Sitter geometry, that it satisfies all conditions and that we’re capable of resolving numerically its parameters of pressure and density.
|
6 |
Les bulles de masse négative dans un espace de de SitterMbarek, Saoussen 12 1900 (has links)
No description available.
|
Page generated in 0.0745 seconds