Spelling suggestions: "subject:"espectro dde energia"" "subject:"espectro dee energia""
11 |
Determinação experimental de razões espectrais e do espectro de energia dos nêutrons no combustível do reator nuclear IPEN/MB-01 / Experimental determination of espectral ratios and of neutrons energy flux in the fuel of the IPEN/MB-01 nuclear reactorBeatriz Guimarães Nunes 27 January 2012 (has links)
Este trabalho visa determinar as razões espectrais e o espectro de energia de nêutrons no interior do combustível do Reator Nuclear IPEN/MB-01. Estes parâmetros são de grande importância para determinar com precisão parâmetros físicos de reatores nucleares, como taxas de reação, tempo de vida do combustível e também parâmetros de segurança, tais como reatividade. Para o experimento, utilizou-se detectores de ativação na forma de finas folhas metálicas, introduzidas em uma vareta combustível experimental desmontável. Em seguida, a vareta foi colocada na posição central do núcleo, que tem uma configuração retangular padrão de 26x28 varetas combustível. Foram utilizados detectores de ativação de diferentes elementos como 197Au, 238U, 45SC, 58Ni, 24Mg, 47Ti e 115In para cobrir grande parte do espectro de energia dos nêutrons. Após a irradiação, os detectores de ativação foram submetidos a espectrometria gama utilizando um sistema de contagem com Germânio hiper-puro, afim de se obter a taxa de reação (atividade de saturação) por núcleo alvo. As razões espectrais foram comparadas com valores obtidos através do método de Monte Carlo utilizando o código MCNP-4C. O espectro de energia de nêutrons foi obtido no interior da vareta combustível utilizando o código SANDBP com um espectro de entrada obtido pelo código MCNP-4C, a partir dos valores de atividade de saturação por núcleo alvo dos detectores de ativação irradiados. / This study aims to determine the spectral ratios and the neutron energy spectrum inside the fuel of IPEN/MB-01 Nuclear Reactor. These parameters are of great importance to accurately determine spectral physical parameters of nuclear reactors like reaction rates, fuel lifetime and also security parameters such as reactivity. For the experiment, activation detectors in the form of thin metal foils were introduced in a collapsible fuel rod. Then the rod was placed in the central position of the core which has a standart rectangular configuration of 26x28 fuel rods. There were used activation detectors from different elements such Au-197, U-238, Sc-45, Ni-58, Mg-24, Ti-47 and In-115 to cover a large range of the neutrons energy spectrum. After the irradiation, the activation detectors were submitted to gamma spectrometry using a counting system with high purity Germanium, to obtain the reaction rates (saturation activity) per target nucleus. The spectral ratios were compared with calculated values obtained by the Monte Carlo method using the MCNP-4C code. The neutron energy spectrum was obtained inside the fuel rod using the SANDBP code with an input spectrum obtained by the MCNP-4C code, based on the saturation activity per target nucleus values of the activation detectors irradiated.
|
12 |
Emprego da parametrização de heisenberg e do método de adomian no decaimento da camada limite convectiva / Employment of the heisenberg s parameterization and the method of adomian in the decay convective Boundary layerKipper, Carla Judite 31 August 2009 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this paper we present a spectral model to describe the decay of turbulent kinetic energy in the Convective Boundary Layer (CLC) of the earth s surface, where the physical processes that occur generate turbulence of convective origin and mechanics in the air. Using
the equations of conservation of time, which describe the dynamics of an element of fluid in a flow, you get an equation for the spectrum of kinetic energy in a homogeneous turbulent flow, but not isotropic. The spectrum of energy is expressed in terms of number of wave
vector kappa and time. Each term in this equation of energy balance, describing different physical processes that generate the turbulence. The terms of production or loss of energy by the effect of heat and friction, are written according to the number of Richardson, which is
a dimensionless quantity that expresses a relationship between potential energy and kinetic energy of a fluid. The term transfer of kinetic energy by inertial effect between eddies of different wave numbers is parameterized from the Heisenberg model which, based on intuitive
arguments, assume that the transfer of energy between eddies with small number of wave for the large number of wavelength is similar to conversion of mechanical energy into heat energy, the effect of molecular viscosity. The number of eddies with wave absorbing higher energy of
eddies of wave number with lower. The dynamic equation for the three-dimensional spectrum of kinetic energy obtained was solved by the Adomian decomposition method for the analytical solution of ordinary differential equations or partial, linear or nonlinear, deterministic or
stochastic. This technique is to decompose a given equation into a linear part and one non-linear, isolating the operator linear, easily inverted of higher order. The nonlinear term is written as a sum of a special class of polynomials called Adomian polynomials of, and unknown function as a series whose terms are calculated on recursively. The application of the Adomian decomposition method for the solution of differential equation integrated non linear due to the spectrum of kinetic energy, has an analytical solution without linearization,
commonly used for simplicity, in problems where processes are highly nonlinear. Moreover, due to rapid convergence of the solution in terms of the Adomian polynomials, the spectrum of kinetic energy was obtained without a large computational effort. From the calculation of the energy spectrum could be determined the variation of turbulent kinetic energy in the CLC and compared with results of numerical simulation in the literature. / No presente trabalho é apresentado um modelo espectral para descrever o decaimento da energia cinética turbulenta na Camada Limite Convectiva (CLC) da superfície terrestre,
onde acontecem os processos físicos que geram turbulência de origem mecânica e convectiva no ar. Partindo das equações de conservação de momento, que descrevem a dinâmica de um elemento de fluído em um escoamento, se obtém uma equação para o espectro de energia cinética em um escoamento turbulento homogêneo, mas não isotrópico. O espectro de energia é expresso em termos do vetor número de onda κ e do tempo. Cada termo, nesta equaçaão de
balanço de energia, descreve processos físicos distintos que geram a turbulência. Os termos de produção ou perda de energia por efeito térmico e por atrito, são escritos em função do número de Richardson, que é uma grandeza adimensional que expressa uma relação entre a energia potencial e a energia cinética de um fluído. O termo de transferência de energia cinética por efeito inercial entre os turbilhões de diferentes números de onda é parametrizado a partir do modelo de Heisenberg que, baseando-se em argumentos intuitivos, assume que o processo de transferência de energia entre turbilhões com pequeno número de onda para os
de número de onda grande, é similar a conversão de energia mecânica em energia térmica, por efeito de uma viscosidade molecular. Os turbilhões com número de onda maior absorvem
energia dos turbilhões com número de onda menor. A
equação dinâmica para o espectro de energia cinética tridimensional obtida foi resolvida pelo método da decomposição de Adomian para solução analítica de equações diferenciais ordinárias ou parciais, lineares ou não lineares, determinísticas ou estocásticas. Esta técnica consiste em decompor uma dada equação
em uma parte linear e outra não-linear, isolando o operador linear, facilmente inversível, de maior ordem. O termo não-linear é escrito como uma soma de uma classe especial de polinômios, denominados Polinômios de Adomian, e a função desconhecida como uma série, cujos termos são calculados de forma recursiva. A aplicação do método de decomposição
de Adomian na solução da equação integro-diferencial não linear resultante para o espectro de energia cinética, permitiu uma solução analítica sem a linearização, comumente usada por simplicidade, em problemas onde se têm processos altamente não lineares. Além disso, devido a rápida convergência da solução expressa em termos dos polinômios de Adomian, o espectro de energia cinética foi obtido sem uma grande esforço computacional. A partir do cálculo do
espectro de energia pôde-se determinar a variação da energia cinética turbulenta na CLC e comparar com os resultados de simulação numérica existentes na literatura.
|
13 |
Anéis quânticos em grafeno na presença de defeitos topológicosSilva Neto, José Amaro da 25 March 2013 (has links)
Submitted by Vasti Diniz (vastijpa@hotmail.com) on 2017-09-19T14:26:49Z
No. of bitstreams: 1
arquivototal.pdf: 24337857 bytes, checksum: 4dcf09dcc5c804cc2b7b0de0feb30331 (MD5) / Made available in DSpace on 2017-09-19T14:26:49Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 24337857 bytes, checksum: 4dcf09dcc5c804cc2b7b0de0feb30331 (MD5)
Previous issue date: 2013-03-25 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The Graphene is a two-dimensional(2-D) semiconductor crystal with null gap, where
charge carriers behave as massless particles. In this speci c dynamics in the limit of
low energies, the energy dispersion relation is linear, and this material can be described
by massless Dirac equation contrasts with the semiconductors, for which the charge carriers
are massive. In this framework, there is the problem of the electronic con nement
in graphene because of tunneling. For overcome this di culty, is proposed a new model
of quantum ring, based on Dirac oscillator and models of rings Tan-Inkson and Bakke-
Furtado. From this new coupling, are obtainable the energy spectrum, persistent currents
and positive spinors to a graphene sheet with / without topological defect type disclination
by massless Dirac equation (2+1). / O grafeno e um cristal bidimensional(2-D) semicondutor com gap nulo, onde os portadores
de cargas se comportam como part culas sem massa. Nesta din^amica espec ca, no limite
de baixas energias, a rela c~ao de dispers~ao de energia e linear, sendo que este material
pode ser descrito pela equa c~ao de Dirac sem massa contrastando com os semicondutores,
cujos portadores de cargas t^em massa. Neste quadro, h a o problema do con namento
eletr^onico no grafeno devido ao tunelamento. Para contornar esta di culdade, e proposto
um novo modelo de anel qu^antico, baseado no oscilador de Dirac e nos modelos de an eis
de Tan-Inkson e Bakke-Furtado. A partir desse novo acoplamento, s~ao obtidos o espectro
de energia, as correntes persistentes e os espinores positivos para uma folha de grafeno
com/sem defeito topol ogico do tipo desclina c~ao, via equa c~ao de Dirac (2+1) sem massa
|
14 |
Uma solução para a equação da energia cinética turbulenta empregando o método das características / A solution for the turbulent kinetic energy equation employing the method of characteristicsSzinvelski, Charles Rogério Paveglio 31 August 2009 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this study, using the Method of Characteristics and numeric resources, presents a solution to the equation Spectral Density Evolution of Turbulent Kinetic Energy for a Convective Boundary Layer (CBL) in the morning.
It presents three models for the evolution of spectral energy density. The first model, based on the assumption of a system of isotropic turbulence, considering only terms of energy transfer inertial and viscous dissipation. The second model adds the term energy production
due to the onset of action of the parameter of heat flux on the surface, but consider it a term of energy transfer inertial anisotropy. The third model employs a mixed configuration of the two previous models, assuming thus distinct regions of operation to inertial transfer terms.
The results shaped the evolution of the CLC. In this case, the growth of the energy spectrum is modeled by inserting energy in the region of low wave numbers, a region in which
the term of anisotropic energy transfer can not transfer the energy introduced by the energy production term. It is observed that in a region of wave number higher there is a stabilization of the parameter variation temporal on the plane characteristics curves (PCC), indicating that the variation of wave number govern the evolution of the energy spectrum. This fact establishes a kind of criterion for stationarity of turbulent flow regimes. / No presente trabalho, utilizando o Método das Característica e recursos numéricos, apresenta-se uma solução para a Equação de Evolução Espectral de Densidade de Energia
Cinética Turbulenta para uma Camada Limite Convectiva (CLC) no período da manhã. Apresenta-se três modelos para a evolução espectral da densidade de energia. O primeiro
modelo, baseado na suposição de um regime de turbulência isotrópica, considera apenas termos de transferência de energia inercial e de dissipação viscosa. O segundo modelo adiciona o termo de produção de energia devido o início da ação do parâmetro de fluxo de calor na superfície, porém considerá-se um termo de transferência de energia inercial anisotrópico. O terceiro modelo emprega uma configuração mista dos dois modelos anteriores, admitindo, desta forma, regiões distintas de atuação para os termos de transferência inercial. Os resultados obtidos modelaram a evolução da CLC. Neste caso, o crescimento do espectro de energia modelado se deu pela inserção de energia na região de baixos números de onda, região em que o termo de transferência de energia anisotrópico não consegue transferir a energia inserida pelo termo de produção de energia. Observa-se que em uma região de número de onda mais alto existe uma estabilização da variação do parâmetro temporal sobre as curvas características planas (CCP), indicando que a variação do número de onda governará a evolução do espectro de energia. Fato que estabelece um tipo de critério de estacionariedade para de regimes de escoamento turbulento.
|
Page generated in 0.0884 seconds