Spelling suggestions: "subject:"estimateur robuste"" "subject:"estimateurs robuste""
1 |
Analyse des séries chronologiques à mémoire longue dans le domaine des ondelettesKouamo, Olaf 28 January 2011 (has links) (PDF)
Le thème de nos travaux porte sur la statistique des processus à longue mémoire, pour lesquels nous proposons et validons des outils statistiques issus de l'analyse par ondelettes. Ces dernières années ces méthodes pour estimer le paramètre de mémoire sont devenues très populaires. Cependant, les résultats théoriques validant rigoureusement les estimateurs pour les modèles semi paramétriques classiques à longue mémoire sont récents (cf. les articles de E. Moulines, F. Roueff et M. Taqqu depuis 2007). Les résultats que nous proposons dans cette thèse s'inscrivent directement dans le prolongement de ces travaux. Nous avons proposé une procédure de test pour détecter des ruptures sur la densité spectrale généralisée. Dans le domaine des ondelettes, le test devient un test de ruptures sur la variance des coefficients d'ondelettes. Nous avons ensuite développé un algorithme de calcul rapide de la matrice de covariance des coefficients d'ondelettes. Deux applications de cet algorithme sont proposées , d'une part pour l'estimation de d et d'autre part pour améliorer le test proposé dans le chapitre précédent. Pour finir, nous avons étudié les estimateurs robustes robustes du paramètre de mémoire d dans le domaine des ondelettes. en se basant sur trois estimateurs de la variance des coefficients d'ondelettes à une échelle. La contribution majeure de ce chapitre est le théorème central limite obtenu pour les trois estimateurs de d dans le cadre des processus gaussiens M(d).
|
2 |
Développement de modèles non paramétriques et robustes : application à l’analyse du comportement de bivalves et à l’analyse de liaison génétiqueSow, Mohamedou 20 May 2011 (has links)
Le développement des approches robustes et non paramétriques pour l’analyse et le traitement statistique de gros volumes de données présentant une forte variabilité,comme dans les domaines de l’environnement et de la génétique, est fondamental.Nous modélisons ici des données complexes de biologie appliquées à l’étude du comportement de bivalves et à l’analyse de liaison génétique. L’application des mathématiques à l’analyse du comportement de mollusques bivalves nous a permis d’aller vers une quantification et une traduction mathématique de comportements d’animaux in-situ, en milieu proche ou lointain. Nous avons proposé un modèle de régression non paramétrique et comparé 3 estimateurs non paramétriques, récursifs ou non,de la fonction de régression pour optimiser le meilleur estimateur. Nous avons ensuite caractérisé des rythmes biologiques, formalisé l’évolution d’états d’ouvertures,proposé des méthodes de discrimination de comportements, utilisé la méthode des shot-noises pour caractériser différents états d’ouverture-fermetures transitoires et développé une méthode originale de mesure de croissance en ligne.En génétique, nous avons abordé un cadre plus général de statistiques robustes pour l’analyse de liaison génétique. Nous avons développé des estimateurs robustes aux hypothèses de normalités et à la présence de valeurs aberrantes, nous avons aussi utilisé une approche statistique, où nous avons abordé la dépendance entre variables aléatoires via la théorie des copules. Nos principaux résultats ont montré l’intérêt pratique de ces estimateurs sur des données réelles de QTL et eQTL. / The development of robust and nonparametric approaches for the analysis and statistical treatment of high-dimensional data sets exhibiting high variability, as seen in the environmental and genetic fields, is instrumental. Here, we model complex biological data with application to the analysis of bivalves’ behavior and to linkage analysis. The application of mathematics to the analysis of mollusk bivalves’behavior gave us the possibility to quantify and translate mathematically the animals’behavior in situ, in close or far field. We proposed a nonparametric regression model and compared three nonparametric estimators (recursive or not) of the regressionfunction to optimize the best estimator. We then characterized the biological rhythms, formalized the states of opening, proposed methods able to discriminate the behaviors, used shot-noise analysis to characterize various opening/closing transitory states and developed an original approach for measuring online growth.In genetics, we proposed a more general framework of robust statistics for linkage analysis. We developed estimators robust to distribution assumptions and the presence of outlier observations. We also used a statistical approach where the dependence between random variables is specified through copula theory. Our main results showed the practical interest of these estimators on real data for QTL and eQTL analysis.
|
Page generated in 0.0636 seconds