• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estruturas complexas nilpotentes em álgebras de lie solúveis

Azevedo, Jaqueline 19 September 2013 (has links)
Submitted by Marcio Filho (marcio.kleber@ufba.br) on 2016-06-07T13:43:12Z No. of bitstreams: 1 dissertação de mestrado.pdf: 721225 bytes, checksum: 1462f7c317d98d5930948db4469d2af0 (MD5) / Approved for entry into archive by Uillis de Assis Santos (uillis.assis@ufba.br) on 2016-06-07T18:12:24Z (GMT) No. of bitstreams: 1 dissertação de mestrado.pdf: 721225 bytes, checksum: 1462f7c317d98d5930948db4469d2af0 (MD5) / Made available in DSpace on 2016-06-07T18:12:24Z (GMT). No. of bitstreams: 1 dissertação de mestrado.pdf: 721225 bytes, checksum: 1462f7c317d98d5930948db4469d2af0 (MD5) / Considerando uma Álgebra de Lie (g,[.,.]) com estrutura complexa J, é possível definir em g um novo colchete Lie [*]J, de modo que se pode mostrar que os subespaços g (1,0) e g(0,1) são subálgebras de Lie isomorfas a (g,[*]J). Para tanto, neste trabalho serão consideradas apenas estruturas complexas integráveis Será mostrado também, que no caso em que essas subálgebras forem nilpotentes, então (g,[.,.]) será solúvel. Nesse sentido, será feita uma caracterização da Álgebras de Lie (g,[*]J) com estrutura complexa s-passos nilpotente, afim de estudar o comportamento do colchete de Lie original [.,.], permitindo assim a construção de exemplos de Álgebras de Lie de dim=6. Também, será mencionado o conceito de estrutura hipercomplexa, demonstrado alguns resultados algébricos envolvendo tal estrutura e exemplificando em casos de Álgebras de Lie de dim=8, afim de comentar sua importância em outros contextos matemáticos.
2

Um espaço de Banach não isomorfo ao conjugado complexo / A Banach space not isomorphic to its complex conjugate

Carrera, Wilson Albeiro Cuellar 25 February 2011 (has links)
Neste trabalho fazemos um estudo do conceito de soma torcida de F-espaços. Apresentamos algumas propriedades e simplificações na construção de somas torcidas de F-espaços localmente limitados. Em particular, estudamos uma condição suficiente para que uma soma torcida de espaços de Banach seja um espaço de Banach. Finalmente aplicamos esses conceitos para definir o espaço construído por N. J. Kalton, que é um exemplo de um espaço de Banach não isomorfo ao conjugado complexo. Este espaço X de Kalton corresponde a uma soma torcida de espaços de Hilbert, isto é, X possui um subespaço fechado E tal que E e X/E são isomorfos a espaços de Hilbert. / In this work we study the concept of twisted sum of F-spaces. We also study some properties and simplifications in the construction of twisted sums of locally bounded F-spaces. In particular, we study a sufficient condition for a twisted sum of Banach spaces to be a Banach space. Finally we apply these concepts to define the space constructed by N. J. Kalton, which is an example of a Banach space not isomorphic to its complex conjugate. The Kalton space X is a twisted sum of Hilbert spaces, i.e. X has a closed subspace E such that E and X/E are isomorphic to Hilbert spaces.
3

Um espaço de Banach não isomorfo ao conjugado complexo / A Banach space not isomorphic to its complex conjugate

Wilson Albeiro Cuellar Carrera 25 February 2011 (has links)
Neste trabalho fazemos um estudo do conceito de soma torcida de F-espaços. Apresentamos algumas propriedades e simplificações na construção de somas torcidas de F-espaços localmente limitados. Em particular, estudamos uma condição suficiente para que uma soma torcida de espaços de Banach seja um espaço de Banach. Finalmente aplicamos esses conceitos para definir o espaço construído por N. J. Kalton, que é um exemplo de um espaço de Banach não isomorfo ao conjugado complexo. Este espaço X de Kalton corresponde a uma soma torcida de espaços de Hilbert, isto é, X possui um subespaço fechado E tal que E e X/E são isomorfos a espaços de Hilbert. / In this work we study the concept of twisted sum of F-spaces. We also study some properties and simplifications in the construction of twisted sums of locally bounded F-spaces. In particular, we study a sufficient condition for a twisted sum of Banach spaces to be a Banach space. Finally we apply these concepts to define the space constructed by N. J. Kalton, which is an example of a Banach space not isomorphic to its complex conjugate. The Kalton space X is a twisted sum of Hilbert spaces, i.e. X has a closed subspace E such that E and X/E are isomorphic to Hilbert spaces.
4

Espaços de Banach com várias estruturas complexas / Banach spaces with various complex structures

Cuellar Carrera, Wilson Albeiro 29 April 2015 (has links)
No presente trabalho, estudamos alguns aspectos da teoria de estruturas complexas em espaços de Banach. Demonstramos que se um espaço de Banach real $X$ tem a propriedade $P$, então todas as estruturas complexas em $X$ também satisfazem $P$, quando $P$ é qualquer uma das seguintes propriedades: propriedade de aproximação limitada, \\emph{G.L-l.u.st}, ser injetivo e ser complementado num espaço dual. Abordamos o problema da unicidade de estruturas complexas em espaços de Banach com base subsimétrica, provando que um espaço de Banach real $E$ com base subsimétrica e isomorfo ao espaço de sequências $E[E]$ admite estrutura complexa única. Por outro lado, apresentamos um exemplo de espaço de Banach com exatamente $\\omega$ estruturas complexas distintas. Também usamos a teoria de estruturas complexas para estudar o clássico problema dos hiperplanos no espaço $Z_2$ de Kalton-Peck. Com o propósito de distinguir $Z_2$ de seus hiperplanos nos perguntamos se os hiperplanos admitem estrutura complexa. Nesse sentido, provamos que os hiperplanos de $Z_2$ contendo a cópia canônica de $\\ell_2$ não admitem estruturas complexas que sejam extensões de estruturas complexas em $\\ell_2$. Também construímos uma estrutura complexa em $\\ell_2$ que não pode-se estender a nenhum operador em $Z_2$. / In this work, we study some aspects of the theory of complex structures in Banach spaces. We show that if a real Banach space $X$ has the property $P$, then all its complex structures also satisfy $P$, where $P$ is any of the following properties: bounded approximation property, \\emph{G.L-l.u.st}, being injective and being complemented in a dual space. We address the problem of uniqueness of complex structures in Banach spaces with subsymmetric basis by proving that a real Banach space $E$ with subsymmetric basis and isomorphic to the space of sequences $E [E]$ admits a unique complex structure. On the other hand, we show an example of Banach space with exactly $\\omega$ different complex structures. We also use the theory of complex structures to study the classical problem of hyperplanes in the Kalton-Peck space $Z_2$. In order to distinguish between $Z_2$ and its hyperplanes we wonder whether the hyperplanes admit complex structures. In this sense we prove that no complex structure on $\\ell_2$ can be extended to a complex structure on the hyperplanes of $Z_2$ containing the canonical copy $l_2$. We also constructed a complex structure on $l_2$ that can not be extended to any operator in $Z_2$.
5

Espaços de Banach com várias estruturas complexas / Banach spaces with various complex structures

Wilson Albeiro Cuellar Carrera 29 April 2015 (has links)
No presente trabalho, estudamos alguns aspectos da teoria de estruturas complexas em espaços de Banach. Demonstramos que se um espaço de Banach real $X$ tem a propriedade $P$, então todas as estruturas complexas em $X$ também satisfazem $P$, quando $P$ é qualquer uma das seguintes propriedades: propriedade de aproximação limitada, \\emph{G.L-l.u.st}, ser injetivo e ser complementado num espaço dual. Abordamos o problema da unicidade de estruturas complexas em espaços de Banach com base subsimétrica, provando que um espaço de Banach real $E$ com base subsimétrica e isomorfo ao espaço de sequências $E[E]$ admite estrutura complexa única. Por outro lado, apresentamos um exemplo de espaço de Banach com exatamente $\\omega$ estruturas complexas distintas. Também usamos a teoria de estruturas complexas para estudar o clássico problema dos hiperplanos no espaço $Z_2$ de Kalton-Peck. Com o propósito de distinguir $Z_2$ de seus hiperplanos nos perguntamos se os hiperplanos admitem estrutura complexa. Nesse sentido, provamos que os hiperplanos de $Z_2$ contendo a cópia canônica de $\\ell_2$ não admitem estruturas complexas que sejam extensões de estruturas complexas em $\\ell_2$. Também construímos uma estrutura complexa em $\\ell_2$ que não pode-se estender a nenhum operador em $Z_2$. / In this work, we study some aspects of the theory of complex structures in Banach spaces. We show that if a real Banach space $X$ has the property $P$, then all its complex structures also satisfy $P$, where $P$ is any of the following properties: bounded approximation property, \\emph{G.L-l.u.st}, being injective and being complemented in a dual space. We address the problem of uniqueness of complex structures in Banach spaces with subsymmetric basis by proving that a real Banach space $E$ with subsymmetric basis and isomorphic to the space of sequences $E [E]$ admits a unique complex structure. On the other hand, we show an example of Banach space with exactly $\\omega$ different complex structures. We also use the theory of complex structures to study the classical problem of hyperplanes in the Kalton-Peck space $Z_2$. In order to distinguish between $Z_2$ and its hyperplanes we wonder whether the hyperplanes admit complex structures. In this sense we prove that no complex structure on $\\ell_2$ can be extended to a complex structure on the hyperplanes of $Z_2$ containing the canonical copy $l_2$. We also constructed a complex structure on $l_2$ that can not be extended to any operator in $Z_2$.

Page generated in 0.0631 seconds