• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Construction of photosensitised semiconductor cathodes

Mat-Teridi, Mohd January 2012 (has links)
Recent studies suggest that the performance of dye-sensitised solar cells (DSC) has appeared to have reached a limit, therefore solar cells based on semiconductor materials, such as extremely thin absorber (ETA) solar cells and tandem solar cells are currently the subject of intense research in the framework of low-cost photovoltaic devices as sources of harvesting sunlight to generate electricity. Generally, semiconductor solar cells have been divided into two different types, namely anodic and cathodic type solar cells. Extensive research and development work has been focused on anodic semiconductor sensitised solar cells to date. In contrast, the cathodic semiconductor sensitised solar cells have received no attention which is very surprising. Developing the cathodic semiconductor sensitised solar cell concept is very important in the development of tandem solar cells as well as other new solar cell configurations. The main reason for the lack of research in this area was due to the rarity of p-type semiconductor materials, which made it difficult to find suitable materials to match the energy band edges for cathodic semiconductor sensitised solar cells (CSSC) as well as solid-state cathodic semiconductor solar cells (SS-CSSC). The primary aim of this thesis was to construct cathodic semiconductor sensitised solar cells as well as their solid-state analogues (SS-CSSC). The work conducted within this doctoral study presents state-of-art materials and thin film processing/preparation methods, their characterisation and developing CSSCs and SS-CSSCs employing such films in cascade configurations. No reports have been published in the literature on SS-CSSC to date. The first stage of this thesis is focused on optimising the morphology and the texture (porosity) of the CuI and NiO semiconductor photocathode, by the introduction of new deposition methods namely, pulsed-electrodeposition (PED) and Aerosol-Assisted Deposition (AAD) and Aerosol-Assisted Chemical Vapour Deposition (AACVD). The electrodes prepared by employing the methods mentioned above and controlling the deposition parameters systematically, we have achieved significant improvement in the film morphology and the texture of the deposited films. The resulting electrodes showed excellent improvement in the photoelectrochemical performance which made it suitable for application in construction of both CSSC and SS-CSSC. The photoelectrochemical performance of the electrodes can be seen clearly through the photocurrent density data. For the case of bare CuI, the PEC performance of electrode prepared by the AAD and PED compared against that of continuous-electrodeposition (ED) electrodes. The photocurrent density achieved for the electrodes prepared by AAD and PED was reported around 175 and 75 µAcm-2 respectively which are way higher than the ED case. At the second stage of this study, the work focused on fabrication and characterisation of the CSSCs. Cathodic sensitised PEC solar cells (CuI/Cu2S/(Eu2+/Eu3+) and NiO/Cu2S/(I3-/I-)) were fabricated by deposition of p-Cu2S on the texture controlled CuI and NiO photocathodes. The morphological properties of the photocathode, in particular layer thickness, particle size and film porosity, play an important role in the PEC performance of CSSCs. Optimisation of these parameters led to increased adsorption of the Cu2S light harvester on the photocathode s surface. As a result, the charge injection from Cu2S to the wide band gap photocathode material (CuI and NiO) was significantly improved. Due to this, the CSSC performance showed significant improvement as semiconductor sensitised cathodic solar cells (CSSC). The IPCE and photocurrent density of the CSSC achieved in this study was around (19 and 7 %) and (1 and 0.5 mAcm-2) for the CuI/Cu2S and NiO/Cu2S electrodes respectively. Finally, the SS-CSSC has been fabricated by employing n-Fe2O3 electron transport layer. The construction of SS-CSSC for the first time using the n-Fe2O3 electron transport layer (CuI/Cu2S/Fe2O3 and NiO/Cu2S/Fe2O3) allowed us to study the materials, optical and photoelectrochemical properties of this device. Under AM 1.5 illumination, the SS-CSSC shows a photocurrent density of 6 and 9 µAcm-2 for CuI/Cu2S/Fe2O3 and NiO/Cu2S/Fe2O3 solar cells, respectively. The results of this work indicated low performance for both SS-CSSC compared to CSSC results, due to the lack of adsorption between the absorber and Fe2O3 electrode. However, this study proved the concept of SS-CSSC based on semiconductor material, which is valuable for the future work of cathodic semiconductor sensitised solar cells as well as solid-state tandem solar cells.
2

Réalisation de cellules solaires nanostructurées à base de nanofils de ZnO. Matériaux et propriétés / Realization of photovoltaique cells based on ZnO nanowires

Sanchez, Sylvia 10 September 2012 (has links)
Les cellules solaires nanostructurées ont été développées pour réduire le coût du photovoltaïque et le rendre compétitif aux autres sources d’énergies. Dans ce but deux cellules solaires ont été étudié durant la thèse: la cellule « eta » (Extremely Thin Absorber) et la cellule hybride à polymères. Dans un premier temps, des couches 2D et nanofils de ZnO ont été réalisés par voie électrochimique sur des substrats verre/TCO (oxyde transparent et conducteur). Il est montré que la température du bain, la densité de charge et la concentration de l’électrolyte support (KCl) infleuncent la morphologie, composition, cristallisation et propriétés optiques des couches. Les films déposés à 0,1 M KCl et à T ≥ 50°C, présente de bonnes propriétés physico-chimiques. La couche 2D est ensuite utilisée pour la croissance des nanofils de ZnO et leurs dimensions sont ajustées avec la moprhologie et l’épaisseur de cette couche. L’électrolyte support et la densité de charge permettent également de contrôler les dimensions des nanofils. Dans un deuxième temps, les nanofils de ZnO ont été photo-sensibilisés par deux types d’absorbeurs : CuInS2 (CIS) et Cu2ZnSnS4 (CZTS). Ils ont été réalisés par différentes méthodes : SILAR (Successive Ion Layer Adsorption and Reaction), électrodépôt et dépôt de nanoparticules pré-synthétisées (pour CIS). Les films préparés par voie SILAR sont très uniformes autour des nanofils. Tandis que ceux réalisés par électrodépôt sont moins homogènes mais de très bonnes qualités cristallines. Grâce à la fonctionnalisation des nanofils, une couche de nanoparticules de CuInS2 très uniforme est déposée. Les cellules « eta » réalisées avec ces structures cœur/coquille montrent un effet photovoltaïque. Les films de ZnO électrodéposés ont été intégrés dans des cellules solaires hybrides à polymères sur substrats verres et plastiques. Ces cellules ont montré de bons rendements et une haute stabilité. / Nanostructured solar cells have been proposed as a solution for photovoltaic cost reduction and to rival the cost of grid-powered electricity. Regarding this challenge, two kinds of solar cells have been studied within the PhD thesis: the Extremely Thin Absorber Solar cells (eta) and the polymer hybrid solar cell. First, we are reporting on the electrochemical deposition of ZnO 2D layers and nanowires on glass substrates covered with TCO (Transparent Conducting Oxide). It is shown that the bath temperature and the supporting electrolyte concentration (KCl) play an important role on the ZnO layer morphology, composition, crystallization and optical properties. The film deposited from 0.1 M KCl and T ≥ 50°C exhibit very good optical and structural properties. These 2D layers are used for consequent ZnO nanowires electrodeposition and their dimensions could be tailored by the seed layer morphology and thickness. The supporting electrolyte concentration and the passed charge density could be additionally used to control their dimensions. Then, the ZnO nanowires have been photosensitized with two absorbers: CuInS2 (CIS) and Cu2ZnSnS4 (CZTS). These materials are prepared by: Successive Ion Layer Adsorption and Reaction (SILAR), electrodeposition and nanoparticules deposition (for CIS). The SILAR films are very uniform around the nanowires. The layers prepared by electrodeposition are less uniform but exhibit very good structural properties. Uniform thin film of CuInS2 nanoparticules are deposited onto functionalized ZnO nanowires. The eta solar cells fabricated with these core/shell nanostructures have shown a photovoltaic effect. The ZnO thin films have been integrated in hybrid solar cells on flexible and rigid substrates. These cells show good power conversion efficiency and a high stability.

Page generated in 0.0825 seconds