Spelling suggestions: "subject:"buthanol"" "subject:"diethanol""
141 |
Modeling and Optimization of a Bioethanol Production FacilityGabriel, Kerron Jude 2011 August 1900 (has links)
The primary objective of this work is to identify the optimal bioethanol production plant capacity and configuration based on currently available technology for all the processing sections involved. To effect this study, a systematic method is utilized which involves the development of a superstructure for the overall technology selection, process simulation and model regression of each processing step as well as equipment costing and overall economic evaluation. The developed optimization model is also designed to incorporate various biomass feedstocks as well as realistic maximum equipment sizing thereby ensuring pragmatism of the work. For this study, the criterion for optimization is minimum ethanol price.
The secondary and more interesting aim of this work was to develop a systematic method for evaluating the economics of biomass storage due to seasonal availabilities. In essence, a mathematical model was developed to link seasonal availabilities with plant capacity with subsequent integration into the original model developed. Similarly, the criterion for optimization is minimum ethanol price.
The results of this work reveal that the optimal bioethanol production plant capacity is ~2800 MT biomass/day utilizing Ammonia Fiber Explosion pretreatment technology and corn stover as the preferred biomass feedstock. This configuration provides a minimum ethanol price of $1.96/gal. Results also show that this optimal pretreatment choice has a relatively high sensitivity to chemical cost thereby increasing the risk of implementation. Secondary to this optimal selection was lime pretreatment using switchgrass which showed a fairly stable sensitivity to market chemical cost.
For the storage economics evaluation, results indicated that biomass storage is not economical beyond a plant capacity of ~98 MMgal/yr with an average biomass shortage period of 3 months. The study also showed that for storage to be economical at all plant capacities, the storage scheme employed should be general open air land use with a corresponding biomass loss rate as defined in the study of 0.5 percent per month.
|
142 |
Optimization of the Liquefaction Process in Bioethanol Production & Development of Method for Quantification of Nonsolubilized Starch in Mash / Optimering av uppströmsprocessen vid bioetanolproduktion samt utveckling av metod för kvantifiering av olöst stärkelse i mäskAldén, Anna January 2008 (has links)
<p>Ethanol production at Lantmännen Agroetanol AB in Norrköping began in December 2000. The objective of this master's thesis is to find and optimize factors affecting the yield of the liquefaction, a part of the upstream process. To measure successfulness of liquefaction it is desired that amount of non-solubilized starch is quantified, and hence a method for determination of non-solubilized starch in mash has to be developed.</p><p>Starch is a carbon reserve in plants. Starch granules are polymers of amylose and amylopectin which are polysaccharides of glucose. When a starch/water solution is heated the starch granules start to absorb water and swell, a process termed gelatinization. The swelling makes the granules susceptible to hydrolysis by enzymes such as alpha-amylase, this is called liquefaction. Eventually the granular structure is broken and the slurry contains solubilized starch which can be saccharified to glucose by glucoamylase. In the bioethanol production process, the milled grain is mixed with water and enzymes. The slurry is heated, gelatinization and liquefaction occurs. Saccharification occurs simultaneously to fermentation. Ethanol is purified from the fermented mash during downstream processing.</p><p>Starch in the form of starch granules cannot be quantified. The adopted principle for determination of non-solubilized starch in liquefied mash is to wash away the solubilized starch, then quantitatively hydrolyze non-solubilized starch to glucose and quantify glucose.</p><p>To find and optimize factors significant for yield of liquefaction multiple factor experiments were conducted where eight factors were studied. pH, temperature in mixtank and temperature in liquefaction tank 1 were the most significant factors. The temperature in liquefaction tank 1 should be kept as is is at 74°C. A small rise in pH should shorten the mean length of dextrins which is preferable. An increase of pH from 5.2 to 5.4 is therefore proposed. The temperature in mixtank should also be increased by a few degrees. The yield of the process should be carefully evaluated during the modifications.</p> / <p>Etanolproduktionen på Lantmännen Agroetanol AB i Norrköping började i December 2000. Målet med examensarbetet är att hitta och optimera faktorer som påverkar utbytet av likvifieringen i etanolproduktionen. För att studera utfallet av likvifieringen är det önskvärt att mäta hur mycket stärkelse som inte har löst sig, och därför måste en metod för att mäta olöst stärkelse i mäsk utvecklas.</p><p>Stärkelse utgör en kolreserv i växter. Stärkelsegranuler är polymerer av amylos och amylopektin, vilka i sin tur är polysackarider av glukos. När en stärkelse/vatten-blandning värms upp börjar stärkelsegranulerna att absorbera vatten och svälla, en process som kallas gelatinisering. Svällningen gör granulerna känsliga mot hydrolys av till exempel enzymet alfa-amylas, vilket kallas för likvifiering. Efter tillräckligt mycket gelatinisering och likvifiering förstörs hela den granulära strukturen och stärkelsen övergår till löst form. Löst stärkelse kan försockras till glukos med enzymet glukoamylas. I produktionen av bioetanol blandas malet spannmål med vatten och enzymer. Slurryn värms upp och gelatinisering och likvifiering sker. Försockring sker simultant med fermenteringen. Etanol renas fram från den fermenterade mäsken i nedströmsprocessen.</p><p>Stärkelse i granulform kan inte kvantifieras. Den valda metoden för mätning av olöst stärkelse i likvifierad mäsk innebär att den lösta stärkelsen tvättas bort, sedan hydrolyseras den olösta stärkelsen kvantitativt till glukos, vilken kan kvantifieras.</p><p>Flerfaktorförsök gjordes för att hitta och optimera faktorer signifikanta för utbytet av likvifiering. Åtta olika faktorer studerades. pH, temperatur i mixtank och temperatur i likvifieringstank 1 visade sig vara de tre mest signifikanta faktorerna. Temperaturen i likvifieringstank 1 ska bibehålla samma temperatur som idag, 74°C. En liten höjning av pH borde förkorta medellängden av dextrinerna, vilket är fördelaktigt. En ökning av pH från 5,2 till 5,4 är föreslås därför. Temperaturen i mixtanken ska ökas några få grader. Utbytet av processen måste noggrant utvärderas under modifieringarna.</p>
|
143 |
Initial investigation on xylose fermentation for lignocellulosic bioethanol productionChen, Yanli. Wang, Jin, January 2009 (has links)
Thesis--Auburn University, 2009. / Abstract. Vita. Includes bibliographic references (p.64-77).
|
144 |
Untersuchungen zur Regulation des pqq-Operons und anderer Komponenten des Ethanol-oxidierenden Systems von Pseudomonas aeruginosaGliese, Nicole January 2009 (has links)
Zugl.: Berlin, Techn. Univ., Diss., 2009
|
145 |
Metabolic effects of ethanol and fructose in thyroxine-treated ratsYlikahri, Reino. January 1970 (has links)
Thesis--Helsinki. / Includes five papers on which the present dissertation is based (p. 61-131). Includes bibliographical references.
|
146 |
Ethanol modulation of glycine receptors from hypoglossal motoneurons /Eggers, Erika Dawn. January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (leaves 91-102).
|
147 |
Oxidative stress and neuronal changes associated with prenatal ethanol exposure in human and monkey brainsBasalah, Duaa Ali 06 April 2015 (has links)
Background: Prenatal ethanol exposure (PNEE) causes irreversible intellectual and
behavioral disabilities, clinically known as fetal alcohol spectrum disorder. Few neuropathologic studies of human brain exist. Hypotheses: First, markers of oxidative stress persist following PNEE. Second, PNEE is associated with inhibitory and excitatory neuron changes. Methods: Human brain autopsies (153) with known PNEE were reviewed; 18 cases (fetus to adult) and controls were selected. Oxidative stress and neuronal differentiation markers were used for immunohistochemistry. Results: There were no obvious differences between control and PNEE brains using oxidative stress markers. In human PNEE brains, glutamatergic neurons were reduced 15.96 % and 18.03% in dentate gyrus and temporal cortex, respectively. GABAergic neurons reactive for parvalbumin were reduced in all hippocampal regions (CA1= 57.86%, CA3= 65.15%, and DG= 53.39%) and temporal cortex (44.13%) in all age groups. Conclusion: GABAergic neuron reduction in human following PNEE could explain motor and behavior distractibility in FASD individuals.
|
148 |
Medial prefrontal cortical extracellular dopamine responses after acutely experimenter-administered or orally self-administered ethanolSchier, Christina Joanne 11 November 2013 (has links)
Dopamine signaling in the prefrontal cortex is thought to play a role in ethanol abuse. However, little is known about how ethanol affects dopamine signaling in the region. There are a few rodent studies regarding the matter, but both the pharmacological effects of ethanol and the effects of self-administered ethanol on extracellular dopamine in the medial prefrontal cortex remain unclear. The goal of the studies conducted for this dissertation is to clarify these relationships. To accomplish this, we monitored both dialysate dopamine and ethanol concentrations in the medial prefrontal cortex of Long Evans rats while an experimenter administered or a rat operantly self-administered ethanol. In naïve rats, dopamine dose-dependently increased after the intravenous infusions of a 10% ethanol solution, while no changes were noted after saline infusions. In rats trained to orally self-administer drinking solutions, dopamine transiently increased at the initiation of consumption in both ethanol-plus-sucrose- and sucrose-solution-consuming rats. Dopamine concentrations remained significantly elevated for the entire 21-minute drinking period in the ethanol-plus-sucrose-consuming group and for the first seven minutes of the drink period in the sucrose-consuming group. Additionally, in the ethanol-plus-sucrose-consuming group, dialysate ethanol concentrations were lowest at the initiation of drinking and then slowly increased, peaking 35 minutes after drinking commenced. Taken together, these data suggest that the mesocortical dopamine system is responsive to acute, intravenous and repeatedly, orally, self-administered ethanol. It appears that direct pharmacological effects of ethanol were responsible for the dopamine increase after acute, ethanol administration. Furthermore, while is it possible that the direct pharmacological effects of ethanol also bolstered the dopamine response seen after ethanol self-administration, we cannot firmly conclude by what mechanism ethanol elicited the differences. Overall, our clarifying and novel results support a role for the mesocortical dopamine system in ethanol abuse, which deserves continued investigation. In addition to completing the two aforementioned data studies, we also published the methods we use to monitor dialysate ethanol concentrations, in a specific brain region, during ethanol self-administration in a video-methods journal. The methods are presented in both a detailed written protocol, as well as a video demonstrating how to perform the procedures. / text
|
149 |
Ethanol-induced regulation of the human dopamine transporterRiherd Methner, Deanna Nicole 13 March 2014 (has links)
The dopamine transporter (DAT) is a plasma membrane-bound protein, localized on peri-synaptic terminals of dopaminergic (DA) neurons. DAT is responsible for terminating DA signaling by rapid removal of the transmitter from the synaptic cleft region. DA signaling relies on a critical balance between release and removal of the neurotransmitter within synaptic clefts. Recycling of DAT between intracellular endosomal compartments and the plasma membrane regulates DAT function. This dynamic trafficking occurs in both a constitutive and regulated manner to increase or decrease the number of transporters on the cell surface available for transmitter reuptake. Therapeutic drugs and/or drugs of abuse, including psychostimulants and ethanol, cause maladaptive changes in DA signaling in mesolimbic areas of the brain, leading to addictive behaviors. DAT is the primary site of action for psychostimulants such as, cocaine, methylphenidate, and amphetamine. These drugs can alter the function and/or regulation of the transporter. Ethanol, one of the most widely abused drugs in society, is known to activate DA pathways in reward and reinforcement areas of the brain. However, the effect of ethanol on DAT function and regulation is less clear. The studies presented here explore the action of ethanol on DAT function in mammalian cell systems, and the subcellular trafficking mechanisms that regulate the transporter. To delineate mechanisms of ethanol action on DAT, several lines of HEK-293 cells stably expressing DAT or ethanol-insensitive DAT mutants were generated. Short-term ethanol exposure was found to potentiate DAT function, and ethanol sensitivity is mediated by specific amino acids in the first intracellular loop. This increase in function was accompanied by an enhancement of DAT expressed on the cell surface. The changes in DAT localization and the absence of consensus phosphorylation sites in the ethanol sensitive regions of the transporter, led to the hypothesis that ethanol modulates DAT uptake by altering the dynamic trafficking of the transporter. In the present studies, we found ethanol directly regulates DAT function by altering specific step of the endosomal recycling pathway. Further analysis of the ethanol-sensitive first intracellular loop revealed this region might also play a role in conformational changes required for substrate binding. The findings presented in these studies describe a novel molecular mechanism of ethanol action on DAT, and provide a framework to further understand the action of ethanol on synaptic dopamine regulation. / text
|
150 |
Optimization of the Liquefaction Process in Bioethanol Production & Development of Method for Quantification of Nonsolubilized Starch in Mash / Optimering av uppströmsprocessen vid bioetanolproduktion samt utveckling av metod för kvantifiering av olöst stärkelse i mäskAldén, Anna January 2008 (has links)
Ethanol production at Lantmännen Agroetanol AB in Norrköping began in December 2000. The objective of this master's thesis is to find and optimize factors affecting the yield of the liquefaction, a part of the upstream process. To measure successfulness of liquefaction it is desired that amount of non-solubilized starch is quantified, and hence a method for determination of non-solubilized starch in mash has to be developed. Starch is a carbon reserve in plants. Starch granules are polymers of amylose and amylopectin which are polysaccharides of glucose. When a starch/water solution is heated the starch granules start to absorb water and swell, a process termed gelatinization. The swelling makes the granules susceptible to hydrolysis by enzymes such as alpha-amylase, this is called liquefaction. Eventually the granular structure is broken and the slurry contains solubilized starch which can be saccharified to glucose by glucoamylase. In the bioethanol production process, the milled grain is mixed with water and enzymes. The slurry is heated, gelatinization and liquefaction occurs. Saccharification occurs simultaneously to fermentation. Ethanol is purified from the fermented mash during downstream processing. Starch in the form of starch granules cannot be quantified. The adopted principle for determination of non-solubilized starch in liquefied mash is to wash away the solubilized starch, then quantitatively hydrolyze non-solubilized starch to glucose and quantify glucose. To find and optimize factors significant for yield of liquefaction multiple factor experiments were conducted where eight factors were studied. pH, temperature in mixtank and temperature in liquefaction tank 1 were the most significant factors. The temperature in liquefaction tank 1 should be kept as is is at 74°C. A small rise in pH should shorten the mean length of dextrins which is preferable. An increase of pH from 5.2 to 5.4 is therefore proposed. The temperature in mixtank should also be increased by a few degrees. The yield of the process should be carefully evaluated during the modifications. / Etanolproduktionen på Lantmännen Agroetanol AB i Norrköping började i December 2000. Målet med examensarbetet är att hitta och optimera faktorer som påverkar utbytet av likvifieringen i etanolproduktionen. För att studera utfallet av likvifieringen är det önskvärt att mäta hur mycket stärkelse som inte har löst sig, och därför måste en metod för att mäta olöst stärkelse i mäsk utvecklas. Stärkelse utgör en kolreserv i växter. Stärkelsegranuler är polymerer av amylos och amylopektin, vilka i sin tur är polysackarider av glukos. När en stärkelse/vatten-blandning värms upp börjar stärkelsegranulerna att absorbera vatten och svälla, en process som kallas gelatinisering. Svällningen gör granulerna känsliga mot hydrolys av till exempel enzymet alfa-amylas, vilket kallas för likvifiering. Efter tillräckligt mycket gelatinisering och likvifiering förstörs hela den granulära strukturen och stärkelsen övergår till löst form. Löst stärkelse kan försockras till glukos med enzymet glukoamylas. I produktionen av bioetanol blandas malet spannmål med vatten och enzymer. Slurryn värms upp och gelatinisering och likvifiering sker. Försockring sker simultant med fermenteringen. Etanol renas fram från den fermenterade mäsken i nedströmsprocessen. Stärkelse i granulform kan inte kvantifieras. Den valda metoden för mätning av olöst stärkelse i likvifierad mäsk innebär att den lösta stärkelsen tvättas bort, sedan hydrolyseras den olösta stärkelsen kvantitativt till glukos, vilken kan kvantifieras. Flerfaktorförsök gjordes för att hitta och optimera faktorer signifikanta för utbytet av likvifiering. Åtta olika faktorer studerades. pH, temperatur i mixtank och temperatur i likvifieringstank 1 visade sig vara de tre mest signifikanta faktorerna. Temperaturen i likvifieringstank 1 ska bibehålla samma temperatur som idag, 74°C. En liten höjning av pH borde förkorta medellängden av dextrinerna, vilket är fördelaktigt. En ökning av pH från 5,2 till 5,4 är föreslås därför. Temperaturen i mixtanken ska ökas några få grader. Utbytet av processen måste noggrant utvärderas under modifieringarna.
|
Page generated in 0.0289 seconds