• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contingent microARN des exosomes, diagnostic et physiopathologie des gliomes / MicroRNA contents of exosomes, diagnosis and physiopathology of gliomas

Ipas, Hélène 31 October 2013 (has links)
Les tumeurs gliales du cerveau et en particulier les glioblastomes sont des tumeurs de très mauvais pronostic. Les paramètres qui contrôlent des phénotypes comme l'agressivité, la migration, ou la chimio-résistance de ces tumeurs sont mal connus. Dans ce contexte tumoral, il est envisagé que les microARN (ARN non-codants d'une vingtaine de bases) soient des acteurs essentiels des phénomènes de modification phénotypique parce qu'ils sont capables d'orchestrer l'expression de nombreux gènes. Nous avons montré que les microARN sont des marqueurs tissulaires précieux pour le diagnostic permettant de différencier les deux types principaux de gliomes à partir de prélèvements tumoraux. Nous avons aussi observé que plusieurs microARN sont, en outre, sécrétés par les cellules gliales saines ou cancéreuses au sein de microvésicules appelées exosomes. Le contenu en ARN de ces exosomes a été caractérisé par analyse moléculaire transcriptomique (ARN messagers et microARN) par techniques d'hybridation sur puces à ADN Affymetrix. Les profils ARN exosomaux sains et cancéreux sont distincts, mais ils ne reflètent pas intégralement le profil ARN des cellules dont ils sont issus. Des conditions de stress hypoxique ou l'utilisation de composés pharmacologiques (GW4869 et 5-aza-2'-désoxycitidine) n'affectent pas la quantité d'exosomes produite par la lignée de glioblastome (U87) en culture. Les profils ARN sont cependant modifiés, et le contenu des exosomes produits semble donc être un mécanisme actif et régulé. Enfin, des exosomes cancéreux incubés avec des cellules saines ont très peu d'effet sur le phénotype de celles-ci. Les microARN tissulaires et exosomaux seraient donc des acteurs importants de la physiopathologie du gliome et de sa progression, dont les rôles restent encore à préciser. / Brain glial tumors, and particularly glioblastomas, are tumors with a very bad prognosis. Nowadays, parameters that control aggressiveness, migration or chemo-resistance are poorly known. In this tumor context microRNAs (20 base-long non-coding RNAs) are thought to be essential actors of phenotypic-modification phenomenons as they are able to control the expression of numerous genes. We showed that microRNAs are precious diagnosis tissular markers helping in differentiating two principal tumor types from tissular samples. We also observed that several microRNAs are secreted by glial cells in microvesicles called exosomes. The exosomes RNA content was characterized by molecular transcriptomic analysis (messenger RNAs and microRNAs) using Affymetrix hybridization techniques. The healthy and cancerous exosomal RNA profiles are distinct but do not reflect the RNA profile of the cells they are derived from. Oxygen stress conditions, or use of chemical drugs (GW4869 or 5-Aza-2'-deoxycitidine), do not affect the quantity of exosomes produced by the culture cell line of glioblastoma U87. Nevertheless, the RNA profiles are modified and contents of exosomes produced seem to be controled by an active and regulated mechanism. Finally, cancerous exosomes incubated with healthy cells have a very restrain effect on their phenotypes. Thus tissular and exosomal microRNAs might be important actors of the glioma physiopathology and progression, which roles remain to be defined in detail.
2

Contingent microARN des exosomes, diagnostic et physiopathologie des gliomes

Ipas, Hélène 31 October 2013 (has links) (PDF)
Les tumeurs gliales du cerveau et en particulier les glioblastomes sont des tumeurs de très mauvais pronostic. Les paramètres qui contrôlent des phénotypes comme l'agressivité, la migration, ou la chimio-résistance de ces tumeurs sont mal connus. Dans ce contexte tumoral, il est envisagé que les microARN (ARN non-codants d'une vingtaine de bases) soient des acteurs essentiels des phénomènes de modification phénotypique parce qu'ils sont capables d'orchestrer l'expression de nombreux gènes. Nous avons montré que les microARN sont des marqueurs tissulaires précieux pour le diagnostic permettant de différencier les deux types principaux de gliomes à partir de prélèvements tumoraux. Nous avons aussi observé que plusieurs microARN sont, en outre, sécrétés par les cellules gliales saines ou cancéreuses au sein de microvésicules appelées exosomes. Le contenu en ARN de ces exosomes a été caractérisé par analyse moléculaire transcriptomique (ARN messagers et microARN) par techniques d'hybridation sur puces à ADN Affymetrix. Les profils ARN exosomaux sains et cancéreux sont distincts, mais ils ne reflètent pas intégralement le profil ARN des cellules dont ils sont issus. Des conditions de stress hypoxique ou l'utilisation de composés pharmacologiques (GW4869 et 5-aza-2'-désoxycitidine) n'affectent pas la quantité d'exosomes produite par la lignée de glioblastome (U87) en culture. Les profils ARN sont cependant modifiés, et le contenu des exosomes produits semble donc être un mécanisme actif et régulé. Enfin, des exosomes cancéreux incubés avec des cellules saines ont très peu d'effet sur le phénotype de celles-ci. Les microARN tissulaires et exosomaux seraient donc des acteurs importants de la physiopathologie du gliome et de sa progression, dont les rôles restent encore à préciser.
3

Etude des spécificités transcriptionnelles et de la compétence des progéniteurs neuraux postnataux du cerveau antérieur chez la souris / Probing transcriptional specificities and fate potential of postnatal neural progenitors in the mouse forebrain

Marcy, Guillaume 19 December 2018 (has links)
Lors du développement, la coordination d’évènements moléculaires et cellulaires mène à la production du cortex qui orchestre les fonctions sensori-motrices et cognitives. Son développement s’effectue par étapes : les cellules gliales radiaires (RGs) – les cellules souches neurales (NSCs) du cerveau en développement – et les cellules progénitrices de la zone ventriculaire (VZ) et de la zone sous ventriculaire (SVZ) génèrent séquentiellement des vagues distinctes de nouveaux neurones qui formeront les différentes couches corticales. Autour de la naissance, les RGs changent de devenir et produisent des cellules gliales. Cependant, une fraction persiste tout au long de la vie dans la SVZ qui borde le ventricule, perdant au passage leur morphologie radiale. Ces NSCs produisent ensuite les différents sous types d’interneurones du bulbe olfactif ainsi que des cellules gliales en fonction de leur origine spatiale dans la SVZ. Ces observations soulèvent d’importantes questions non résolues sur 1) le codage transcriptionnel régulant la régionalisation de la SVZ, 2) le potentiel des NSCs postnatales dans la réparation cérébrale, et 3) le lignage et les spécificités transcriptionnelles entre les NSCs et leur descendants. Mon travail de doctorat repose sur une étude transcriptionnelle des domaines de la SVZ postnatale. Celle-ci soulignait le fort degré d’hétérogénéité des NSCs et progéniteurs et identifiait des régulateurs transcriptionnels clés soutenant la régionalisation. J’ai développé des approches bio-informatiques pour explorer ces données et connecter l’expression de facteurs de transcription (TFs) avec la genèse régionale de lignages neuraux distincts. J’ai ensuite développé un modèle d’ablation ciblée pour étudier le potentiel régénératif des progéniteurs postnataux dans divers contextes. Finalement, j’ai participé au développement d’une procédure pour explorer et comparer des progéniteurs pré et postnataux à l’échelle de la cellule unique. Objectif 1 : Des expériences de transcriptomique et de cartographie ont été réalisées pour étudier la relation entre l’expression régionale de TFs par les NSCs et l’acquisition de leur devenir. Nos résultats suggèrent un engagement précoce des NSCs à produire des types cellulaires définis selon leur localisation spatiale dans la SVZ et identifient HOPX comme un marqueur d’une sous population biaisé à générer des astrocytes. Objectif 2 : J’ai mis au point un modèle de lésion corticale qui permet l’ablation ciblée de neurones de couches corticales définies pour étudier la capacité régénérative et la spécification appropriée des progéniteurs postnataux. Une analyse quantitative des régions adjacentes, incluant la région dorsale de la SVZ, a révélé une réponse transitoire de progéniteurs définis. Objectif 3 : Nous avons développé la lignée de souris transgénique Neurog2CreERT2Ai14, qui permet le marquage de cohortes de progéniteurs glutamatergiques et de leurs descendants. Nous avons montré qu’une large fraction de ces progéniteurs persiste dans le cerveau postnatal après la fermeture de neurogénèse corticale. Ils ne s’accumulent pas pendant le développement embryonnaire mais sont produits par des RGs qui persistent après la naissance dans la SVZ et qui continuent de générer des neurones corticaux, bien que l’efficacité soit faible. Le séquençage d’ARN sur cellule unique a révélé une dérégulation transcriptionnelle qui corrèle avec le déclin progressif observé in vivo de la neurogénèse corticale. Ensemble, ces résultats soulignent le potentiel des études transcriptomiques à résoudre mais aussi à soulever des questions fondamentales comme les changements trancriptionnels intervenant dans une population de progéniteurs au cours du temps et participant aux changements de leur destinée. Cette connaissance sera la clé du développement d’approches novatrices pour recruter et promouvoir la génération de types cellulaires spécifiques, incluant les sous-types neuronaux dans un contexte pathologique. / During development, a remarkable coordination of molecular and cellular events leads to the generation of the cortex, which orchestrates most sensorimotor and cognitive functions. Cortex development occurs in a stepwise manner: radial glia cells (RGs) - the neural stem cells (NSCs) of the developing brain - and progenitor cells from the ventricular zone (VZ) and the subventricular zone (SVZ) sequentially give rise to distinct waves of nascent neurons that form cortical layers in an inside-out manner. Around birth, RGs switch fate to produce glial cells. A fraction of neurogenic RGs that lose their radial morphology however persists throughout postnatal life in the subventricular zone that lines the lateral ventricles. These NSCs give rise to different subtypes of olfactory bulb interneurons and glial cells, according to their spatial origin and location within the postnatal SVZ. These observations raise important unresolved questions on 1) the transcriptional coding of postnatal SVZ regionalization, 2) the potential of postnatal NSCs for cellular regeneration and forebrain repair, and 3) the lineage relationship and transcriptional specificities of postnatal NSCs and of their progenies. My PhD work built upon a previously published comparative transcriptional study of defined microdomains of the postnatal SVZ. This study highlighted a high degree of transcriptional heterogeneity within NSCs and progenitors and revealed transcriptional regulators as major hallmarks sustaining postnatal SVZ regionalization. I developed bioinformatics approaches to explore these datasets further and relate expression of defined transcription factors (TFs) to the regional generation of distinct neural lineages. I then developed a model of targeted ablation that can be used to investigate the regenerative potential of postnatal progenitors in various contexts. Finally, I participated to the development of a pipeline for exploring and comparing select populations of pre- and postnatal progenitors at the single cell level. Objective 1: Transcriptomic as well as fate mapping were used to investigate the relationship between regional expression of TFs by NSCs and their acquisition of distinct neural lineage fates. Our results supported an early priming of NSCs to produce defined cell types depending of their spatial location in the SVZ and identified HOPX as a marker of a subpopulation biased to generate astrocytes. Objective 2: I established a cortical lesion model, which allowed the targeted ablation of neurons of defined cortical layers to investigate the regenerative capacity and appropriate specification of postnatal cortical progenitors. Quantitative assessment of surrounding brain regions, including the dorsal SVZ, revealed a transient response of defined progenitor populations. Objective 3: We developed a transgenic mouse line, i.e. Neurog2CreERT2Ai14, which allowed the conditional labeling of birth-dated cohorts of glutamatergic progenitors and their progeny. We used fate-mapping approaches to show that a large fraction of Glu progenitors persist in the postnatal forebrain after closure of the cortical neurogenesis period. Postnatal Glu progenitors do not accumulate during embryonal development but are produced by embryonal RGs that persist after birth in the dorsal SVZ and continue to give rise to cortical neurons, although with low efficiency. Single-cell RNA sequencing revealed a dysregulation of transcriptional programs, which correlates with the gradual decline in cortical neurogenesis observed in vivo. Altogether, these data highlight the potential of transcriptomic studies to unravel but also to approach fundamental questions such as transcriptional changes occurring in a population of progenitors over time and participating to changes in their fate potential. This knowledge will be key in developing innovative approaches to recruit and promote the generation of selected cell types, including neuronal subtypes in pathologies.

Page generated in 0.0893 seconds