Spelling suggestions: "subject:"eucalyptus -- diestern australia"" "subject:"eucalyptus -- diestern 4ustralia""
1 |
Leaf-litter and microsite on seedling recruitment in an alley-planted E. sargentii and Atriplex spp. saline agricultural systemFarrell, Claire January 2008 (has links)
[Truncated abstract] In order to assess the sustainability of mixed plantings on saline land, this thesis examined the importance of leaf-litter trapping and microsites on recruitment in a salt affected alley-belted (tree/shrub) agricultural system in Western Australia. Located in the low rainfall region (MAR <330 mm) of the wheatbelt, the 60 ha site consists of concentric rows of Eucalyptus sargentii trees with mounded (6 - 11 cm high) 10 -15 m inter-rows of Atriplex spp. Sustainability of this system and fulfilment of productive and ameliorative functions is dependant on successful recruitment (perennials). Although the present study site was conducted on farmland in a Mediterranean-type climate, low annual rainfall and spatial arrangement of perennial shrubs and trees, allow useful comparisons to be made with naturally occurring banded semi-arid systems and vice-versa. Of key interest were leaf-litter redistribution and trapping by tree and shrub rows and whether litter-cover/microsites facilitated/interfered with seedling recruitment (establishment, growth and survival). Litter from the tree row, redistributed by prevailing winds and rain, accumulated adjacent to saltbush seeding mounds, creating a mosaic of bare and littered areas across the site (total litter 10 t/ha over 22 months). Accumulated litter was hypothesized to differentially influence seasonal soil abiotic parameters (depending on litter-cover density) including; salinity, water availability, infiltration rates, water repellency and temperature. These abiotic conditions were also hypothesized to vary between tree and shrub microsites. Biotically, recruitment at this site was also hypothesized to be determined by interactions (positive and negative) between perennial components and understorey annuals/perennial seedlings. Accumulation of litter and resultant heterogeneity was influenced by shrub morphology, microtopography, wind direction and distance from litter source, with increased litter on the leeward sides of hemispherical Atriplex undulata shrubs and shrubs closest to tree rows. ... The importance of tree/shrub microsites varied seasonally, with no influence in winter due to moderate temperatures and increased water availability. In warmer months saltbush mid-row microsites were most favourable for seedling recruitment due to moderate litter-cover; reducing salinity, temperatures and increasing infiltration; and reduced root-competition/shading by the tree row. Tree microsites also directly inhibited seedling recruitment through increased salinities and water repellency. However, trees also indirectly facilitated recruitment in adjacent areas through provision of leaf-litter. As litter-trapping and recruitment patterns at this site mirror those found in semi-arid natural and artificial systems, the results of this study provide useful insights into creating appropriate mimics of low rainfall natural banded woodland and chenopod shrublands. Saltbush seeding mounds, shrub morphology and litter were key components for litter trapping and recruitment heterogeneity at this site. In this tree/shrub alley planting, where litter quantities directly influence vegetation cover densities, future saline plantings need to consider appropriate tree/shrub row spacings and orientation for efficient resource (seeds, litter and water) capture.
|
2 |
Temporal and spatial effects of a long term large scale alley farming experiment on water table dynamics : implications for effective agroforestry designNoorduijn, Saskia L. January 2009 (has links)
[Truncated abstract] Removal of native vegetation to facilitate traditional agriculture practices has been shown to reduce ecosystem health, and restricts the native habitat. The subsequent change in the predominant vegetation water use patterns has altered the catchment water balance, and hydrology which results in land degradation through such processes of salinisation and water logging. More recently, moves toward more sustainable farming practices have been taken to help re-establish catchment hydrological equilibrium and improve catchment ecosystem services. Agroforestry is one such vehicle for this reestablishment. Perennial native vegetation has been shown to have a significant effect on catchment processes, mitigating any further degradation of the land. The effect of alternating native perennial tree belts with traditional broad acre agriculture in the alleys, referred to as alley farming, is investigated in this thesis due to the potential environmental and economic benefits that can result. This thesis investigates the impact of tree belts upon the water table and aims to gauge the ability of alley farming at controlling recharge within the low-medium rainfall zone on the valley floor. The basis of this research is the analysis of data collected from the Toolibin Alley Faring Trial. This experiment was established in 1995 to assess the viability of alley farming and incorporates different combinations of belt width, alley width and revegetation density. Transects of piezometers within each design have been monitored from October 1995 to January 2008. The piezometers were sporadically monitored over this period on a total of 39 dates. ... To further understand the response observed in the water table data, in depth hydrograph analysis of the control piezometer water levels was conducted. The statistical analysis demonstrates that the belts are having a very limited impact on the water table morphology, this is associated with the restricted use of groundwater by the perennial tree belts due to the poor quality, has been applied. This explains why there is limited signature of increased water table depth in the statistical analysis; there is evidence that alley farming as a means of reducing recharge may work however the overriding control on the trial are the rainfall trends rather than perennial growth. The low perennial biomass production at the site is an effect of limited water resources; however a significant distinction can be made between the water table depth and variability beneath high and low biomass belts. There are three main controls at the site; climate, development of perennial biomass and development of perennial root systems (both vertically and laterally). The regional climatic trends will influence water table levels creating a greater soil water storage capacity; therefore the contribution of soil water to transpiration rates will enable the tree belts to have some impact on recharge. Of the alley farming designs tested, the optimal planting density and belt/alley design, from an economic perspective, is identified as having a 4m belt width which generated the greatest biomass. As a means of controlling recharge at the site the effectiveness of alley farming is limited due the shallow saline water table limiting perennial growth.
|
3 |
Growing mallee eucalypts as short-rotation tree crops in the semi-arid wheatbelt of Western AustraliaWildy, Daniel Thomas January 2004 (has links)
[Truncated abstract] Insufficient water use by annual crop and pasture species leading to costly rises in saline watertables has prompted research into potentially profitable deep-rooted perennial species in the Western Australian wheatbelt. Native mallee eucalypts are currently being developed as a short-rotation coppice crop for production of leaf oils, activated carbon and bio-electricity for low rainfall areas (300—450 mm) too dry for many of the traditional timber and forage species. The research in this study was aimed at developing a knowledge base necessary to grow and manage coppiced mallee eucalypts for both high productivity and salinity control. This firstly necessitated identification of suitable species, climatic and site requirements favourable to rapid growth, and understanding of factors likely to affect yield of the desirable leaf oil constituent, 1,8-cineole. This was undertaken using nine mallee taxa at twelve sites with two harvest regimes. E. kochii subsp. plenissima emerged as showing promise in the central and northern wheatbelt, particularly at a deep acid sand site (Gn 2.61; Northcote, 1979), so further studies focussed on physiology of its resprouting, water use and water-use efficiency at a similar site near Kalannie. Young E. kochii trees were well equipped with large numbers of meristematic foci and adequate root starch reserves to endure repeated shoot removal. The cutting season and interval between cuts were then demonstrated to have a strong influence on productivity, since first-year coppice growth was slow and root systems appeared to cease in secondary growth during the first 1.5—2.5 years after cutting. After decapitation, trees altered their physiology to promote rapid replacement of shoots. Compared to uncut trees, leaves of coppices were formed with a low carbon content per unit area, and showed high stomatal conductance accompanied by high leaf photosynthetic rates. Whole-plant water use efficiency of coppiced trees was unusually high due to their fast relative growth rates associated with preferential investments of photosynthates into regenerating canopies rather than roots. Despite relatively small leaf areas on coppice shoots over the two years following decapitation, high leaf transpiration rates resulted in coppices using water at rates far in excess of that falling as rain on the tree belt area. Water budgets showed that 20 % of the study paddock would have been needed as 0—2 year coppices in 5 m wide twin-row belts in order to maintain hydrological balance over the study period. Maximum water use occurred where uncut trees were accessing a fresh perched aquifer, but where this was not present water budgets still showed transpiration of uncut trees occurring at rates equivalent to 3—4 times rainfall incident on the tree belt canopy. In this scenario, only 10 % of the paddock surface would have been required under 5 m wide tree belts to restore hydrological balance, but competition losses in adjacent pasture would have been greater
|
Page generated in 0.1041 seconds