Spelling suggestions: "subject:"euler's formula"" "subject:"ruler's formula""
1 |
Assessing the Physical Vulnerability of Backbone NetworksShivarudraiah, Vijetha 04 April 2011 (has links)
Communication networks are vulnerable to natural as well as man-made disasters. The geographical layout of the network influences the impact of these disasters. It is therefore, necessary to identify areas that could be most affected by a disaster and redesign those parts of the network so that the impact of a disaster has least effect on them. In this work, we assume that disasters which have a circular impact on the network. The work presents two new algorithms, namely the WHF-PG algorithm and the WHF-NPG algorithm, designed to solve the problem of finding the locations of disasters that would have the maximum disruptive effect on the communication infrastructure in terms of capacity.
|
2 |
Grafos, a fórmula de Euler e os poliedros regularesBRITO, Adriana Priscila de 08 August 2014 (has links)
Submitted by (lucia.rodrigues@ufrpe.br) on 2017-03-28T12:41:18Z
No. of bitstreams: 1
Adriana Priscila de Brito.pdf: 1439366 bytes, checksum: 6c39b441ca6cf64e146c11f1a5822457 (MD5) / Made available in DSpace on 2017-03-28T12:41:18Z (GMT). No. of bitstreams: 1
Adriana Priscila de Brito.pdf: 1439366 bytes, checksum: 6c39b441ca6cf64e146c11f1a5822457 (MD5)
Previous issue date: 2014-08-08 / This presentation provides an introduction to graph theory, making the connection between some of its concepts and the and characterization of Regular Polyhedra. Special emphasis will be given to the study of Eulerian graphs, Euler's Formula, Graphs and Planar Graphs Platonic. Finally, a proposed instructional sequence that focuses on introducing the concept of the graph elementary school students, making connections with the regular polyhedra is presented. / O presente trabalho tem como objetivo principal apresentar uma introdução à Teoria dos Grafos, fazendo a ligação entre alguns dos seus conceitos e a caracterização dos Poliedros Regulares. Será dada uma ênfase especial ao estudo dos Grafos Eulerianos, da Fórmula de Euler, dos Grafos Planares e dos Grafos Platônicos. Por fim, será apresentada uma proposta de sequência didática que tem como foco introduzir o conceito de grafo a alunos do ensino básico, fazendo ligações com os Poliedros Regulares.
|
3 |
Combinatorial Argument of Partition with Point, Line, and Space / 點線面與空間分割的組合論證法王佑欣, Yuhsin Wang Unknown Date (has links)
在這篇論文裡,我們將要討論一類古典的問題,這類問題已經經由許多方法解決,例如:遞迴關係式、差分方程式、尤拉公式等等。接著我們歸納低維度的特性,並藉由定義出一組方程式-標準n維空間分割系統-來推廣這些特性到一般的$n$維度空間中。然後我們利用演算法來提供一個更直接的組合論證法。最後,我們會把問題再細分成有界區域與無界區域的個數。 / In this article, we will discuss a class of classical questions had been solved by Recurrence Relation, Difference Equation, and Euler's Formula, etc.. And then, we construct a system of equations -Standard Partition System of n-Dimensional Space- to generalize the properties of maximizing the number of regions made up by k partitioner in an n-dimensional space and look into the construction of each dimension. Also, we provide a more directly Combinatorial Argument by Algorithm for this kind of question. At last, we focus on the number of bounded regions and unbounded regions in sense of maximizing the number of regions.
|
4 |
Compatible discretizations for Maxwell equationsHe, Bo 22 September 2006 (has links)
No description available.
|
5 |
Trigonometry: Applications of Laws of Sines and CosinesSu, Yen-hao 02 July 2010 (has links)
Chapter 1 presents the definitions and basic properties of trigonometric functions including: Sum Identities, Difference Identities, Product-Sum Identities and Sum-Product Identities. These formulas provide effective tools to solve the problems in trigonometry.
Chapter 2 handles the most important two theorems in trigonometry: The laws of sines and cosines and show how they can be applied to derive many well known theorems including: Ptolemy¡¦s theorem, Euler Triangle Formula, Ceva¡¦s theorem, Menelaus¡¦s Theorem, Parallelogram Law, Stewart¡¦s theorem and Brahmagupta¡¦s Formula. Moreover, the formulas of computing a triangle area like Heron¡¦s formula and Pick¡¦s theorem are also discussed.
Chapter 3 deals with the method of superposition, inverse trigonometric functions, polar forms and De Moivre¡¦s Theorem.
|
Page generated in 0.0414 seconds