• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 343
  • 115
  • 106
  • 73
  • 30
  • 13
  • 13
  • 13
  • 13
  • 13
  • 13
  • 11
  • 8
  • 4
  • 4
  • Tagged with
  • 830
  • 112
  • 101
  • 84
  • 81
  • 71
  • 62
  • 61
  • 57
  • 56
  • 52
  • 49
  • 48
  • 47
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Sessile Droplets of Salt Solutions on Inert and Metallic Surfaces : Influence of Salt Concentration Gradients on Evaporation and Corrosion Behaviour / Gouttes sessiles de solutions salines sur des surfaces inertes et métalliques : influence des gradients de concentration en sel sur la dynamique d'évaporation et le processus de corrosion

Soulié, Virginie 02 December 2015 (has links)
Dans cette thèse, la dynamique d'évaporation de gouttes sessiles de solutions salines sur des surfaces planes inertes et métalliques a été étudiée et le phénomène de corrosion pour les surfaces ferriques caractérisé. En premier lieu, nous nous sommes intéressés à la dynamique d'évaporation de gouttes sessiles salées sur des surfaces inertes pour une large gamme de concentrations en sel, d'humidité relatives, de tailles de goutte et d'angles de contact. Notre étude révèle les domaines de validité du modèle classique d'évaporation, processus contrôlé par la diffusion de la vapeur dans l'air et met en évidence l'impact de flux (de Marangoni) induits par des gradients de concentration (tension de surface) en sel sur la dynamique d'évaporation et les dépôts salins obtenus après évaporation de la goutte. De plus, nous nous sommes consacrés à l'évolution spatio-temporelle de gouttes sessiles de solutions salines sur des surfaces métalliques. Contrairement au modèle simplifié de la goutte d'Evans, nous avons montré que le processus de corrosion s'étend aux abords de la ligne de contact, avec la formation d'un film périphérique. La ligne triple est déstabilisée par des gradients de tension de surface induits par des variations de composition ionique au cours du processus de corrosion et la migration des cations vers la périphérie de la goutte. Enfin nous avons étudié le phénomène de corrosion du métal induit par l'évaporation de gouttes sessiles salées. Le processus de corrosion, en particulier la localisation des réactions anodiques et cathodiques sur la surface métallique en contact avec la goutte est corrélée à la distribution spatiale du sel au sein de la goutte s'évaporant. / In this thesis we investigate the evaporation behaviour of sessile droplets of aqueous saline solutions on planar inert and metallic surfaces and characterise the corrosion phenomenon for iron surfaces. First we study the evaporation behaviour of sessile salty droplets on inert surfaces for a wide range of salt concentrations, relative humidities, droplet sizes and contact angles. Our study reveals the range of validity of the well-accepted diffusion-controlled evaporation model and highlights the impact of salt concentration (surface tension) gradients driven Marangoni flows on the evaporation behaviour and the subsequent salt deposit patterns. Furthermore we study the spatial-temporal evolution of sessile droplets from saline solutions on metallic surfaces. In contrast to the simple, generally accepted Evans droplet model, we show that the corrosion spreads ahead of the macroscopic contact line with a peripheral film. The three-phase contact line is destabilized by surface tension gradients induced by ionic composition change during the course of the corrosion process and migrations of cations towards the droplet perimeter. Finally we investigate the corrosion behaviour under drying salty sessile droplets on metallic surfaces. The corrosion process, in particular the location of anodic and cathodic activities over the footprint droplet area is correlated to the spatial distribution of the salt inside the drying droplet.
72

Heat and energy exchange above different surfaces using surface renewal /

Mengistu, Michael Ghebrekidan. January 2008 (has links)
Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2008. / Full text also available online. Scroll down for electronic link.
73

Sensible heat flux for estimating evaporation /

Savage, Michael J. January 2010 (has links)
Thesis (Ph.D.) - University of KwaZulu-Natal, Pietermaritzburg, 2010. / Full text also available online. Scroll down for electronic link.
74

Sensible heat flux and evaporation for sparse vegetation using temperature-variance and a dual-source model /

Abraha, Michael G. January 2010 (has links)
Thesis (Ph.D.) - University of KwaZulu-Natal, Pietermaritzburg, 2010. / Full text also available online. Scroll down for electronic link.
75

Sensible heat flux under unstable conditions for sugarcane using temperature variance and surface renewal /

Nile, Eltayeb Sulieman. January 2010 (has links)
Thesis (Ph.D.) - University of KwaZulu-Natal, Pietermaritzburg, 2010. / Full text also available online. Scroll down for electronic link.
76

Effet des hétérogénéités à grande échelle sur l'évaporation et le séchage en présence de sel dissous en milieu poreux / Effect of large-scale heterogeneities on evaporation and drying on crystallization of dissolved salts in porous media

Hidri, Faiza 18 July 2013 (has links)
L’altération des matériaux poreux est attribuée en grande partie aux sels présents en solution dans l’espace des pores. Ce phénomène d’altération est classiquement associé à la cristallisation des sels dissous via la notion de pression de cristallisation. Le phénomène de cristallisation est quant à lui souvent très directement lié aux écoulements ou aux variations de saturation dus à l’évaporation auquel est soumis le milieu poreux. Une meilleure compréhension des phénomènes d’altération passe donc par une compréhension du transport des ions lors de l’évaporation et notamment de l’évolution de leur concentration locale. Dans ce contexte, ce travail consiste à étudier expérimentalement et numériquement le transfert des ions en solution dans un milieu poreux hétérogène pour deux situations de référence : la situation de mèche et la situation de séchage. Dans le cas de la situation de mèche, le milieu poreux est alimenté de façon continue en solution saline au cours de l’évaporation. Le milieu poreux reste complètement saturé tout au long de l’évaporation. En revanche, la situation de séchage est caractérisée par la diminution progressive de la saturation en liquide au cours du temps. Le sel considéré est le chlorure de sodium, un sel très présent dans un grand nombre d’applications. L’accent est mis sur l’étude de l’effet d’hétérogénéités macroscopiques, c’est-à-dire des variations spatiales de porosité et/ou de perméabilité, sur la position et la dynamique des maximums de concentration en sel à la surface évaporative du milieu poreux pour les deux situations de référence précitées. Les maximums de concentration correspondent en effet aux lieux les plus probables de la cristallisation. La première partie de ce travail porte sur la situation de mèche. Les expériences et les simulations numériques montrent que les maximums de concentration en sel sont anticorrélés avec les maximums de porosité et/ou de perméabilité aux temps longs. Ainsi le sel se dépose à la surface du milieu le moins perméable et le moins poreux si l’évaporation est uniforme à la surface du milieu poreux. La deuxième partie de cette étude est dédiée à l’étude de la situation de séchage. On trouve l’inverse du cas de la situation de mèche, c’est-à-dire une corrélation directe des maximums de concentration avec les maximums de porosité et de perméabilités. Ceci s’explique par la désaturation préférentielle des zones à plus fortes porosités et à plus fortes perméabilités lors du séchage. Nous avons également étudié des situations où le flux d’évaporation était plus marqué en périphérie de l’échantillon, ce qui conduit notamment à l’apparition des efflorescences en forme d’anneau de fée. Notre étude a également mis en évidence un effet notable de sursaturation ainsi que la nécessité de prendre en compte dans l’analyse l’augmentation de la porosité près d’une paroi dans le cas des milieux poreux formés par des empilements de particules. / Alteration of porous media is often due to the salts solution present in the pore space. This phenomenon is typically associated with the crystallization process of dissolved salts in relation with the concept of crystallization pressure. The salt crystallization phenomenon is in turn very often directly related to the flows or the saturation variation resulting from evaporation. A better understanding of alteration process thus needs a better understanding of the ions transport during evaporation and of the local evolution of ions concentration. In this context, this work presents an experimental and numerical study of sodium chloride transport in heterogeneous porous media. Two basic situations are considered: namely drying and wicking-evaporation. In the evaporation-wicking situation the sample is in contact at its bottom with an aqueous solution and the medium remains fully saturated by the solution during evaporation. In drying the limiting surfaces of the porous sample are in contact with impervious walls or exposed to evaporation. Since there is no supply of liquid to compensate the evaporation in this case, the overall liquid saturation decreases during the drying process. The focus is on the impact of porosity and permeability heterogeneities on the ion concentration maxima at the evaporative surface of a porous medium for the two reference situations. The ion concentration maxima correspond to the incipient spots of crystallization. The first part is devoted to the evaporation-wicking situation. Experiments and numerical simulations show that the salt concentration maxima are anticorrelated with the maxima in porosity and / or permeability in the long time regime. As a result the salt crystallizes at the surface of the less permeable and less porous medium if the evaporation is uniform at the surface of porous medium. The second part is devoted to the study of the drying situation. The drying situation is markedly different from the evaporation-wicking situation. The ion concentration maxima correspond to regions of greatest porosity and / or permeability because of the preferential decrease in saturation in the region of largest porosity / permeability. This is exactly the contrary of the evaporation-wicking situation. We also studied situations where higher evaporation fluxes along the periphery of the evaporative surface lead to the formation of an efflorescence fairy ring. The study also reveals a quite significant supersaturation effect and the impact of porosity variations near the wall on the ion concentration distribution and the first time of crystallization when the porous medium is formed by a packing of particles.
77

Biological approach to improving the evaporation rates of mine wastewater desalination brine treated in evaporation ponds

Moyo, Anesu Conrad January 2021 (has links)
Philosophiae Doctor - PhD / The disposal of brine effluent from inland wastewater desalination plants is a growing global problem with adverse economic and environmental implications because of the substantial cost associated with its disposal and the potential for polluting groundwater resources. Currently, the best and most economical option for brine disposal from inland desalination plants is the use of evaporation ponds, which concentrate the liquid until getting a solid waste that can be valued or directly managed by an authorized company. The effectiveness of these ponds is therefore dependent on the evaporation rate, which has previously been improved by the addition of dyes such as methylene blue. However, the addition of chemical dyes to the evaporation ponds poses a threat to the environment, wildlife, and humans.
78

Development of an Enclosed Evaporation Chamber Utilizing a Fresnel Lens Solar Concentrator

Planz, Bridger T 08 1900 (has links)
This thesis project investigates the configuration of an enclosed evaporation chamber with the intention of converting seawater into potable freshwater. The evaporation chamber's sole heat source is provided by a Fresnel lens, located above the chamber, which concentrates sunlight onto a 3-inch diameter focal plate built into the core of the chamber. The design of the evaporation chamber is modeled after a solar still and is coupled with a heat exchanger to boost efficiency of the system. The chamber was designed with the objectives of being portable, lightweight, low cost, corrosion resistant, interchangeable, and size convenient with the goal of producing 1 Liter of freshwater per hour of operation. The evaporation chamber consists of two primary components, a core and an attached arrangement of fins, all of which are heated via the Fresnel lens. A consistent intake of 2 grams/second of saltwater enters from the top of the chamber and is then gravity fed across the fins. Fin orientation has been designed to inhibit the flow rate of water within the chamber, maximizing the surface area of contact with the heated fins. The evaporation chamber was modeled through SOLIDWORKS and underwent a physical optimization study to reduce material usage while maximizing potential for heat transfer and minimizing fluid flow rate. A symmetric profile of one quarter of the chamber was then simulated in COMSOL Multiphysics. Concentrated solar heat flux through a Fresnel lens was applied to the receiver on the top of the core. The simulation was split into a preheating and an evaporation phase. A profile approximation for the fluid flow was modeled by the CFD module. Following computer simulations, the evaporation chamber was constructed and tested.
79

Thin Film Evaporation Modeling of the Microlayer Region in a Dewetting Water Bubble

Lakew, Ermiyas January 2022 (has links)
No description available.
80

Effect of sonic pulses on rate of evaporation

Buckhannan, William Henry January 2011 (has links)
Digitized by Kansas State University Libraries

Page generated in 0.1354 seconds