• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 235
  • 198
  • 63
  • 23
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • Tagged with
  • 614
  • 228
  • 227
  • 105
  • 96
  • 75
  • 67
  • 62
  • 61
  • 60
  • 57
  • 53
  • 52
  • 51
  • 51
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Effects of forest age and topography on boreal forest evapotranspiration and water balance

Barker, Corinne A. 12 September 2008 (has links)
The boreal forest forms a band that stretches across the continents of the northern hemisphere. Wildfire disturbances have helped transform this forest into stands of varying ages with varying soil drainage. It is well known that the boreal forest contributes greatly to the global water cycle, but less is known as to how variable these water fluxes are throughout the forest mosaic. Throughout the growing seasons of 2006 and 2007, meteorological measurements were taken during the growing season from three different aged black spruce stands near Thompson, MB. The stands that were burned in 1930 and 1964 each included upland and lowland sites with independent measurements. The stand burned in 1850 had measurements taken only from an upland site. Evapotranspiration (ET) was calculated from the residual energy after net radiation (Rn), sensible heat flux (H) and ground heat flux were measured. We sought to investigate whether ET varied with stand age and topographic location. Results indicate that there is a significant increase in Rn, H, and ET as forests age. ET levels range from being 4% to 19% lower for younger stands. It is assumed that the depth of the organic layer at older sites allows for mosses to more effectively wick up available moisture through capillary rise, and have higher transpiration levels. The larger tree density at the 1964 sites compared to the 1930 sites may account for a portion of the observed increase in ET for these ages. Differences in drainage between the 1930 and 1850 sites may also account for a portion of the increase in ET observed between these two ages. Wetland sites had H and ET that were significantly less than for the upland sites. ET rates were 11 to 20% higher at the upland sites than the wetland sites; part of this difference is thought to be due to the presence of larger trees, with an increased capacity to transpire water at upland sites. As the number of forest fires has been predicted to increase substantially in the future, the prospect of the boreal forest average stand age being younger would affect the boreal’s water and energy budgets. Our data helps to describe water and energy budgets for forest stands with different drainage capabilities, for stands between the ages of 45 and 160 years. This knowledge will be used to help predict the degree and speed of climate change that will be experienced in the boreal forest. / October 2008
62

Using web services and remote sensing to visualize water balances in the San Marcos River Basin / Civil, Architectural, and Environmental Engineering

Siegel, Daniel Bandes, 1984- 25 June 2012 (has links)
The water balance equation is one of the most fundamental concepts in hydrology. How much precipitation a river basin receives, and where that water goes, defines what flora, fauna, and industry the basin can support. Models for solving this equation originally relied only on precipitation, air temperature, and day length, but have adapted as new data becomes available. Recent advances in technology, especially remote sensing and web services, make it cheaper and easier than ever to obtain hydrological data, including many variables that were previously impossible to measure. This thesis will examine the water balance of the San Marcos River Basin and demonstrate how remote sensing and web services can improve our understanding of the basin's hydrology. It was found that 72% of precipitation in the San Marcos Basin is lost to evapotranspiration. This percentage varies from year to year as a function of precipitation, but the annual volume of evapotranspiration stays almost constant. It was only during the second consecutive year of drought that there was an appreciable change in evapotranspiration. This suggests that annual evapotranspiration can be thought of as a property inherent to a watershed's hydrology, and so long as there is enough stored water in the soil, that demand will be met. The water left over after ET takes its share can either flow out of the basin through a river channel or stay within the basin as storage. After examining methods for partitioning the available water between outflow and storage, it was found that lumped water balance models cannot be used in the San Marcos River Basin because of its complex interactions with the Edwards Aquifer. In order to better model soil moisture dynamics and groundwater infiltration, a distributed model will have to be developed that accounts for flow in and out of the aquifer. / text
63

Daily estimation of local evapotranspiration using energy and water balance approaches

Rim, Chang-Soo. January 1995 (has links)
Meteorological and environmental (i.e. soil water content) data measured from semiarid watersheds (Lucky Hills and Kendall) during the summer rainy and winter periods were used to study the interrelationships between variables, and to evaluate the effects of variables on the daily estimation of actual evapotranspiration (AET). The relationship between AET and potential evapotranspiration (PET) as a function of an environmental factor was the major consideration of this research. The relationship between AET and PET as a function of soil water content as suggested by Thornthwaite-Mather, Morton and Priestley-Taylor was studied to determine its applicability to the study area. Furthermore, multiple linear regression (MLR) analysis was employed to evaluate the order of importance of the meteorological and soil water factors involved. Finally, the information gained was used for MLR model development. The results of MLR analysis showed that the combined effects of available energy, soil water content and wind speed were responsible for 77 % of the observed variations in AET at Lucky Hills watershed and 70 % at Kendall watershed during the summer rainy period. The analyses also indicated that the combined effects of available energy, vapor pressure deficit and wind speed were responsible for 70 % of the observed variations in AET at Lucky Hills watershed and 72 % at Kendall watershed during the winter period. However, the test results of three different approaches, using the relationships between AET and PET as a function of soil water content indicated some inadequacy. The low correlation between PET, AET, and soil moisture conditions raised some doubt concerning the validity of methods developed elsewhere, and indicated the effects of energy availability on the relationship between PET, AET, and soil water content regardless of the soil water condition. In contrast, agreement between observed AET and estimated AET from MLR models during the summer rainy and winter periods at both watersheds indicated that MLR models can give reasonable estimates of AET, at least under the climatic conditions in which the formulae were developed.
64

Estimating bank storage and evapotranspiration using soil physical and hydrological techniques in a gaining reach of the San Pedro River, Arizona

Whitaker, Martha Patricia Lee. January 2000 (has links)
Bank storage is defined as a volume of water that periodically infiltrates a river's banks during increases in stream stage. It is a potentially critical variable for accurately modeling the water budget in semi-arid riparian systems, but is particularly difficult to assess and quantify. It is especially essential for understanding ground-water/surface-water interactions. In collaboration with other projects, a field-scale vadose monitoring effort took place in the San Pedro Riparian National Conservation Area (SPRNCA), Arizona. The San Pedro River flows north from Mexico into the United States, and SPRNCA is a 60 km stretch of U.S.-protected ecosystem north of the border. In addition to a progressive climate of ecological conservation, hydrological research that leads to an improved understanding of the water budget will ultimately improve the prospects for improved water policy decisions. Soil moisture, stream stage, and soil tension data were collected for over 8 consecutive months in both 1997 and 1998, and the data were used as input into a software program called HYDRUS-2D (§imiinek et al. 1996), which models two-dimensional, variably saturated flow. Field-collected data and subsequent modeling efforts suggest that the effects of bank storage were estimated to contribute approximately 8.5% of the river's total flow for 147 days in 1997. Accordingly, bank storage and its effects should be considered in future water-balance simulations of stream-aquifer interaction, and of the San Pedro River in particular. In addition, model estimates of root water uptake match favorably with other estimates of evapotranspiration in the cottonwood-willow forest gallery of the SPRNCA.
65

An evaluation of the enclosure effect of evapotranspiration tents on leaf temperatures of Tamarix pentandra

Sebenik, Paul Gregory, 1941- January 1967 (has links)
No description available.
66

Deficit Irrigation of Bermudagrass and Seashore Paspalum for Golf Course Turf

Bañuelos, Jaime January 2010 (has links)
We compared water deficit responses of 'Tifsport', 'Tifway 419', 'Tifgreen 328', and 'MidIron' bermudagrass (Cynodon dactylon x Cynodon transvaalensis), and 'SeaSpray', 'SeaDwarf', and 'Sea Isle 1' seashore paspalum (Paspalum vaginatum Swartz) under a linear gradient irrigation system in the desert Southwest. Target irrigation levels were 100, 80, 60, and 40% (2009) and 100, 80, 70, 60, and 40% (2010) of standard reference evapotranspiration (ETo). Actual water applied (including rainfall) was 100%, 83%, 66%, and 49% of ETo (2009) and 100%, 83%, 75%, 66%, and 49% (2010). Canopy temperatures increased, and quality and dry matter production declined with reduced irrigation. For optimum turfgrass quality, 75 to 83% ETo replacement was required; for acceptable quality turfgrass, 66 to 75% ETo replacement was needed for bermudagrass, and 75 to 80% ETo for seashore paspalum. Spring green-up was delayed by drought. Bermudagrasses, particularly 'MidIron', performed better than seashore paspalums under water stress conditions.
67

Modeling carbon-water-vegetation dynamics using remote sensing and climate data

Jahan, Nasreen Unknown Date
No description available.
68

The effect of intercepted rainfall on evapotranspiration rates over a mixed hardwood forest in southern Quebec /

Singh, Bhawan January 1976 (has links)
No description available.
69

Effects of forest age and topography on boreal forest evapotranspiration and water balance

Barker, Corinne A. 12 September 2008 (has links)
The boreal forest forms a band that stretches across the continents of the northern hemisphere. Wildfire disturbances have helped transform this forest into stands of varying ages with varying soil drainage. It is well known that the boreal forest contributes greatly to the global water cycle, but less is known as to how variable these water fluxes are throughout the forest mosaic. Throughout the growing seasons of 2006 and 2007, meteorological measurements were taken during the growing season from three different aged black spruce stands near Thompson, MB. The stands that were burned in 1930 and 1964 each included upland and lowland sites with independent measurements. The stand burned in 1850 had measurements taken only from an upland site. Evapotranspiration (ET) was calculated from the residual energy after net radiation (Rn), sensible heat flux (H) and ground heat flux were measured. We sought to investigate whether ET varied with stand age and topographic location. Results indicate that there is a significant increase in Rn, H, and ET as forests age. ET levels range from being 4% to 19% lower for younger stands. It is assumed that the depth of the organic layer at older sites allows for mosses to more effectively wick up available moisture through capillary rise, and have higher transpiration levels. The larger tree density at the 1964 sites compared to the 1930 sites may account for a portion of the observed increase in ET for these ages. Differences in drainage between the 1930 and 1850 sites may also account for a portion of the increase in ET observed between these two ages. Wetland sites had H and ET that were significantly less than for the upland sites. ET rates were 11 to 20% higher at the upland sites than the wetland sites; part of this difference is thought to be due to the presence of larger trees, with an increased capacity to transpire water at upland sites. As the number of forest fires has been predicted to increase substantially in the future, the prospect of the boreal forest average stand age being younger would affect the boreal’s water and energy budgets. Our data helps to describe water and energy budgets for forest stands with different drainage capabilities, for stands between the ages of 45 and 160 years. This knowledge will be used to help predict the degree and speed of climate change that will be experienced in the boreal forest.
70

Effects of forest age and topography on boreal forest evapotranspiration and water balance

Barker, Corinne A. 12 September 2008 (has links)
The boreal forest forms a band that stretches across the continents of the northern hemisphere. Wildfire disturbances have helped transform this forest into stands of varying ages with varying soil drainage. It is well known that the boreal forest contributes greatly to the global water cycle, but less is known as to how variable these water fluxes are throughout the forest mosaic. Throughout the growing seasons of 2006 and 2007, meteorological measurements were taken during the growing season from three different aged black spruce stands near Thompson, MB. The stands that were burned in 1930 and 1964 each included upland and lowland sites with independent measurements. The stand burned in 1850 had measurements taken only from an upland site. Evapotranspiration (ET) was calculated from the residual energy after net radiation (Rn), sensible heat flux (H) and ground heat flux were measured. We sought to investigate whether ET varied with stand age and topographic location. Results indicate that there is a significant increase in Rn, H, and ET as forests age. ET levels range from being 4% to 19% lower for younger stands. It is assumed that the depth of the organic layer at older sites allows for mosses to more effectively wick up available moisture through capillary rise, and have higher transpiration levels. The larger tree density at the 1964 sites compared to the 1930 sites may account for a portion of the observed increase in ET for these ages. Differences in drainage between the 1930 and 1850 sites may also account for a portion of the increase in ET observed between these two ages. Wetland sites had H and ET that were significantly less than for the upland sites. ET rates were 11 to 20% higher at the upland sites than the wetland sites; part of this difference is thought to be due to the presence of larger trees, with an increased capacity to transpire water at upland sites. As the number of forest fires has been predicted to increase substantially in the future, the prospect of the boreal forest average stand age being younger would affect the boreal’s water and energy budgets. Our data helps to describe water and energy budgets for forest stands with different drainage capabilities, for stands between the ages of 45 and 160 years. This knowledge will be used to help predict the degree and speed of climate change that will be experienced in the boreal forest.

Page generated in 0.1255 seconds