• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 235
  • 198
  • 63
  • 23
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • Tagged with
  • 614
  • 228
  • 227
  • 105
  • 96
  • 75
  • 67
  • 62
  • 61
  • 60
  • 57
  • 53
  • 52
  • 51
  • 51
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Evaluation and verification of conservation and similarity approaches for estimating regional evapotranspiration

Davis, Luke Howell 08 1900 (has links)
No description available.
42

Modelling long-term runoff from upland catchments

Cheesman, Joanne E. January 1998 (has links)
The aim of the research contained in this thesis was to develop a model of long-term upland catchment runoff that can be used for ungauged catchments. This is a problem due to the complex spatial and temporal nature of runoff and the main contributing processes, precipitation (P) and evapotranspiration (Et). It is also a problem due to the lack of suitable data on which to base and test models of these processes, particularly in remote upland areas such as the north-west of England, the study area of this research. Long-term runoff is important since it represents the maximum rate at which water is available for human use and management, for assessment of water resource yield and for prediction of extreme events that are particularly important in respect to climate change. Methods currently in use by water companies in the UK, such as North West Water Limited (NWW), are inadequate since they fail to account for the spatial and temporal nature of runoff. New more reliable methods are therefore required which will equip water managers with flexible and responsive runoff modelling tools based upon routinely available data and that are sensitive to the complex physical nature of the processes involved. A physically based distributed runoff model was developed using GIS technology and spatial data to interpolate and extrapolate available point-based hydrometeorological data. The strategy required the development of models to derive areal representations of P and Et. For the P modelling several interpolation techniques and artificial neural network models were investigated. The results were evaluated against an independent data set. The results showed that a geostatistical interpolation technique, detrended Kriging, which uses pointbased precipitation and spatial elevation data provided the most accurate estimates when compared to other methods. The models of Et involved extrapolation of point-based Et values derived from the Penman-Monteith formula (Monteith, 1965), using spatial land cover data. A point-based temperature function model (Wright and Harding, 1993) that reduces the Penman estimates of Et for upland sites was spatially implemented using spatial temperature and elevation data. No independent data were available for model evaluation but first estimates of errors were gained through comparison of errors of runoff and precipitation estimates. Overall it was found that the most accurate E, model results were derived when the temperature function model was not implemented. Evidence of whether or not a lumped or heterogeneous land cover representation provided the more accurate results was unclear. Error evaluation and sensitivity analysis of the modelled runoff was carried out using measured runoff records and the results were compared to those produced using the North West Water model. It was found that the GIS-based model provided improved estimates of long-term average annual runoff for upland catchments. The largest component of the errors of the GIS-based method were associated with the Et estimates. This was principally a result of poor quality and limited availability of data for the study area. The research highlights many wider issues related to the use of GIS and spatial data for hydrological modelling.
43

Evapotranspiration in a desert environment

Shields, Suzanne Jean. January 1982 (has links) (PDF)
Thesis (M.S. - Hydrology and Water Resources)--University of Arizona, 1982. / Includes bibliographical references (leaves 73-75).
44

Transpiration and evapotranspiration with Aleppo pine (Pinus halepensis Mill.) seedlings under varying soil moisture and solar radiation levels

Halverson, Howard G. January 1962 (has links) (PDF)
Thesis (M.S. - Watershed Management)--University of Arizona. / Includes bibliographical references.
45

A modified surface energy balance for modeling evapotranspiration and canopy resistance

Lagos, Luis Octavio. January 2008 (has links)
Thesis (Ph.D.)--University of Nebraska-Lincoln, 2008. / Title from title screen (site viewed Mar. 5, 2009). PDF text: xv, 192 p. : ill. ; 15 Mb. UMI publication number: AAT 3336552. Includes bibliographical references. Also available in microfilm and microfiche formats.
46

Evaporation from a pine forest

Sugita, Michiaki. January 1987 (has links)
Thesis (doctoral)--University of Tsukuba, 1987. / Cover title. Includes bibliographical references (p. 53-61).
47

Operational Actual Wetland Evapotranspiration Estimation for South Florida Using MODIS Imagery

Ceron, Cristobal N 15 April 2014 (has links)
The purpose of this study is to validate the ability of the Simplified Surface Energy Balance (SSEB) approach and the Simple Method to provide AET estimates for wetland recovery efforts. The study utilizes the MODIS sensor aboard NASA's Terra satellite and SFWMD solar radiation data to derive AET values for South Florida. The SSEB/Simple-Method approach provided mixed results with good agreement with control values during dry season (rave (59) = 0.700, pave < 0.0005) and poor agreement during wet season (rave(46) = 0.137, pave = 0.304). Further refinement is needed to make this method viable for yearly estimates due to the poor performance during wet season months. This approach can prove useful for short term wetland recovery assessment projects that occur during the dry season and/or long term projects that compare AET rates from a site from dry season to dry season.
48

ESTIMATION AND COMPARISON OF EVAPOTRANSPIRATION FROM MULTIPLE SATELLITES FOR CLEAR SKY DAYS

BATRA, NAMRATA 27 September 2005 (has links)
No description available.
49

Evapotranspiration relationships and crop coefficient curves of irrigated field crops

Hattendorf, Mary Jene January 2011 (has links)
Typescript (photocopy). / Digitized by Kansas Correctional Industries
50

The effects of windbreaks on the effectiveness of sprinkler irrigation systems.

Kilaka, Eric Kisambuli January 2015 (has links)
In the Canterbury region, New Zealand, water is a contentious issue when irrigation and dairy farming are involved. The Canterbury region accounts for 70% of the total irrigated land area in New Zealand and is one of the most productive agricultural regions. Traditionally, water has been seen as an abundant resource, but growing water demands are now outstripping the supply of water, hence threatening the sustainability of agricultural productivity. In the long term, this problem may worsen as a result of climate change, which is predicted to increase water demands and reduce supply in many parts of Canterbury. In the recent and on-going expansion of irrigation systems, modern sprinkler irrigation methods, namely centre pivot and lateral spray irrigation technology, have replaced the old border-dyke systems. This has been due to the need to increase irrigation flexibility and efficiency to guarantee pasture growth for dairy production in dry periods. This conversion has resulted in a reduction of windbreaks to 2 m heights or sometimes led to 100% removal of windbreaks so as to accommodate centre pivot or linear move irrigation systems. Removal of windbreaks or reduction of windbreak height may increase wind speed across a field. Both spray evaporation loss and evapotranspiration are a function of wind speed. Hence, any increase in wind speed may lead to an increase in irrigation requirements. There is little information currently available on outlining how reduction of windbreak height or the complete removal of windbreaks affects efficiency in water application. Thus, this research was done to quantify the effects of windbreaks on water savings under sprinkler irrigation systems in the Canterbury region under various climatic conditions. The research was done in three major steps: (1) spray evaporation loss (SEL)was measured under various climatic conditions for two typical spray nozzles(Nelson Irrigation Corporation Rotator R3000 and Spinner S3000 nozzles) to develop SEL prediction models; (2) wind speed reduction behind windbreaks was quantified for fields under various wind conditions; and (3) the effects of wind speed reduction by windbreaks was modelled for evapotranspiration, spray evaporation loss and irrigation. The results showed that an increase of wind speed, due to the removal of windbreaks or a reduction of height of windbreaks, leads to an increase in evapotranspiration and spray evaporation losses in irrigated agriculture. For the size of the fields considered in this study which are 80 m by 80 m (Site 1 with medium porosity windbreaks) and 120 m by 120 m (Site 2 with low porosity windbreaks), extra irrigation water of up to 14% is needed in one growing season when windbreaks are reduced to 2 m in height. When windbreaks are completely removed from the field, extra irrigation water of up to 38% and 64% is needed when irrigating using the Rotator R3000 nozzle and the Spinner S3000 nozzle, respectively. Thus, reduction of water resource use can be achieved in irrigated agriculture if irrigation systems can be designed to operate under existing windbreaks. Other savings can follow, from reduced requirements for pumping, fuel and labour costs. Lastly, with future climate change projections showing that the Canterbury region will get windier and hotter, windbreaks can help mitigate water losses associated with sprinkler irrigation

Page generated in 0.1296 seconds