Spelling suggestions: "subject:"event handling"" "subject:"avent handling""
1 |
Handling External Events Efficiently in Gillespie's Stochastic Simulation AlgorithmGeltz, Brad 05 October 2010 (has links)
Gillespie's Stochastic Simulation Algorithm (SSA) provides an elegant simulation approach for simulating models composed of coupled chemical reactions. Although this approach can be used to describe a wide variety biological, chemical, and ecological systems, often systems have external behaviors that are difficult or impossible to characterize using chemical reactions alone. This work extends the applicability of the SSA by adding mechanisms for the inclusion of external events and external triggers. We define events as changes that occur in the system at a specified time while triggers are defined as changes that occur to the system when a particular condition is fulfilled. We further extend the SSA with the efficient implementation of these model parameters. This work allows numerous systems that would have previously been impossible or impractical to model using the SSA to take advantage of this powerful simulation technique.
|
2 |
Composition dynamique de services sensibles au contexte dans les systèmes intelligents ambiants / Dynamic context-aware services composition in ambient intelligent systemsYachir, Ali 23 February 2014 (has links)
Avec l'apparition des paradigmes de l'intelligence ambiante et de la robotique ubiquitaire, on assiste à l'émergence de nouveaux systèmes intelligents ambiants visant à créer et gérer des environnements ou écosystèmes intelligents d'une façon intuitive et transparente. Ces environnements sont des espaces intelligents caractérisés notamment par l'ouverture, l'hétérogénéité, l'incertitude et la dynamicité des entités qui les constituent. Ces caractéristiques soulèvent ainsi des défis scientifiques considérables pour la conception et la mise en œuvre d'un système intelligent adéquat. Ces défis sont principalement au nombre de cinq : l'abstraction de la représentation des entités hétérogènes, la gestion des incertitudes, la réactivité aux événements, la sensibilité au contexte et l'auto-adaptation face aux changements imprévisibles qui se produisent dans l'environnement ambiant. L'approche par composition dynamique de services constitue l'une des réponses prometteuses à ces défis. Dans cette thèse, nous proposons un système intelligent capable d'effectuer une composition dynamique de services en tenant compte, d'une part, du contexte d'utilisation et des diverses fonctionnalités offertes par les services disponibles dans un environnement ambiant et d'autre part, des besoins variables exprimés par les utilisateurs. Ce système est construit suivant un modèle multicouche, adaptatif et réactif aux événements. Il repose aussi sur l'emploi d'un modèle de connaissances expressif permettant une ouverture plus large vers les différentes entités de l'environnement ambiant notamment : les dispositifs, les services, les événements, le contexte et les utilisateurs. Ce système intègre également un modèle de découverte et de classification de services afin de localiser et de préparer sémantiquement les services nécessaires à la composition de services. Cette composition est réalisée d'une façon automatique et dynamique en deux phases principales: la phase offline et la phase online. Dans la phase offline, un graphe global reliant tous les services abstraits disponibles est généré automatiquement en se basant sur des règles de décision sur les entrées et les sorties des services. Dans la phase online, des sous-graphes sont extraits automatiquement à partir du graphe global selon les tâches à réaliser qui sont déclenchées par des événements qui surviennent dans l'environnement ambiant. Les sous-graphes ainsi obtenus sont exécutés suivant un modèle de sélection et de monitoring de services pour tenir compte du contexte d'utilisation et garantir une meilleure qualité de service. Les différents modèles proposés ont été mis en œuvre et validés sur la plateforme ubiquitaire d'expérimentation du laboratoire LISSI à partir de plusieurs scénarii d'assistance et de maintien de personnes à domicile / With the appearance of the paradigms of the ambient intelligence and ubiquitaire robotics, we attend the emergence of new ambient intelligent systems to create and manage environments or intelligent ecosystems in a intuitive and transparent way. These environments are intelligent spaces characterized in particular by the opening, the heterogeneousness, the uncertainty and the dynamicité of the entities which establish(constitute) them. These characteristics so lift(raise) considerable scientific challenges for the conception(design) and the implementation of an adequate intelligent system. These challenges are mainly among five: the abstraction of the representation of the heterogeneous entities, the management of the uncertainties, the reactivity in the events, the sensibility in the context and the auto-adaptation
|
3 |
An Adaptable, Fog-Computing Machine-to-Machine Internet of Things Communication FrameworkBadokhon, Alaa 01 June 2017 (has links)
No description available.
|
Page generated in 0.0633 seconds